
Lecture note - Error analysis

ZHAO, Yongfeng
Center for Soft Condensed Matter Physics and Interdisciplinary Research & School

of Physical Science and Technology, Soochow University, 215006 Suzhou, China

(Dated: December 26, 2022)

CONTENTS

I. Introduction 1

A. Objectives of experimental courses 1

B. Measurement 1

C. Error 2

D. Uncertainty 2

II. The estimation of uncertainties 3

A. The uncertainty from the finite precision of instruments of a single measurement 3

B. The uncertainty from statistics of repeated measurements 4

C. The combined uncertainty of repeated measurements 5

D. The uncertainty of indirect measurements 6

E. The uncertainty of linear least-squares fitting 8

I. INTRODUCTION

A. Objectives of experimental courses

Physics, especially theoretical physics, is built on experiments. Unlike biology and chemistry, we do not have many

standard protocols, with which one must be skilled in research and applications in physics. Thus, the training in the

undergraduate physics experimental courses is mainly about the following.

• Complement theoretical courses.

We try to convince the students that the theories they learn in the other courses are not bullshit. The theories

we learned in the mechanics and electromagnetism courses are built to describe and analyze experimental

phenomena. Finally, we must return to the real world to see how they work.

• The basic concept of academic integrity.

To build correct knowledge in physics, one must respect academic integrity. The first step is to respect the

reality: Experimental data are from experiments. Experimental data cannot be faked or plagiarized.

Due to the randomness of nature, the numbers of individual measurements are not important at all. There is

no perfect answer for the data, and it will not contribute to the final mark. Faking or plagiarizing data does not

bring more grades. The student will lose all the data grades for one experiment if one fakes or plagiarizes data.

• Error analysis.

It will be the topic of this note.

B. Measurement

Measurement is at the center of physics experiments. Physics is built on quantitative and precise measurements

of quantities, from which we find relations of quantities and formulate theories to describe nature. Some quantities can
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be measured directly. E.g., One can measure the thickness of a plate using an outside micrometer. Some quantities

have to be inferred indirectly, using the existing knowledge of physics law. E.g., One can use Ohm’s law to estimate

the resistance of a resistor by measuring the voltage and the current across the resistor.

Philosophically, we believe there is a ground truth in each physical quantity. We want to know the ground truth

through measurements. It is, however, a basic fact that no measurements can be exact in reality. It is safe

to say that all new physics and technologies come from increasing preciseness. Hence, improving the preciseness of

measurements is a crucial question. The answer will require knowledge of errors.

C. Error

Error is the deviation between the measurements and the ground truth. Error analysis is about the origin of errors

and the estimation of uncertainties. Through these analyses, we will know:

• How good is a measurement result? To what extent can we trust our measurements.

• How to improve the accuracy of a measurement, considering the limited preciseness of instruments?

We usually classify errors into two types based on their origin and statistical behavior.

• Systematic error is a systematic bias in the measurements. It can come from the systematic bias of instru-

ments, inaccurate methods, systematic change in the environment, and a bias from the experimentalist.

We can use better instruments, improve the methods, and control the environment to reduce systematic errors.

• Random error varies from one observation to another. It usually comes from thermal motion, random events,

and the intrinsic randomness of nature.

The primary method to reduce random error is repeating the same observation and averaging the result.

Note that an error is not a mistake in the experiment. Error is inevitable and can not be eliminated. We

assume the experiment has been correctly carried out when talking about errors.

D. Uncertainty

Uncertainty is the range in which the ground truth of a measurement lies with a certain probability. It denotes

the confidence interval of a measurement result. A measurement result x is usually denoted as

x± ux , (1)

where ux is the uncertainty of the quantity X. The expression indicates that the ground truth of X lies with a certain

probability in the interval (x− ux, x+ ux). A measurement result can be complete only when accompanied

by uncertainty and unit.

Here we note that only 1-2 significant figures in ux are enough for the purpose. Since the preciseness of the result

is bounded by ux, the significant figures beyond ux become meaningless. The figures in the final result should align

with the uncertainty.

Example 1: Consider a measurement of length gives l = 3.9514 cm and ul = 0.1261 cm. Firstly, we keep only one

significant figure in ul = 0.1. Then since the ground truth lies probably in (3.9514 − 0.1 cm, 3.9514 + 0.1 cm), more

than 2 significant figures in l becomes meaningless. The final result should be expressed as

l = 4.0± 0.1 cm .

Here we apply the rounding rule of ”only on and no off”, such that the last digit should always be plus one. Note

that the last digit 0 in l cannot be neglected.

Example 2: A measurement of length gives l = 2.6±0.3 cm. If the error is normally distributed and the uncertainty

is reported as standard deviation, the probability that the ground truth lies in (2.3 cm, 2.9 cm) is 68.3%. Because for

normal distribution

1

σ
√
2π

∫ σ

−σ

e−
x2

2σ2 ≈ 0.683 . (2)
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Due to the random error, the measurement result is a random variable from a specific (but unknown) probability

distribution. The uncertainty is commonly taken as the standard deviation for this probability distribution. In the

next section, we will talk about how to estimate it.

II. THE ESTIMATION OF UNCERTAINTIES

A. The uncertainty from the finite precision of instruments of a single measurement

All the instruments, in reality, have finite precision and accuracy, thus limiting the uncertainty of a single measure-

ment. Let us first discuss the instrumental uncertainty in a single direct observation.

The error of an instrument is usually calibrated and measured by the manufacturer. One needs to read the manual

of the instrument to know how to determine its uncertainty. It can vary from one instrument to another.

Usually, the error of an instrument is given in terms of tolerance. The error in most instruments can be considered

uniformly distributed within a range bounded by the tolerance. For example, suppose we measure a length of 1.56

cm with a ruler of division 0.1 cm. The ground truth will not leave the interval (1.51, 1.61) cm. The tolerance is

0.1/2 = 0.05 cm, and the measurement result can be assumed uniformly distributed in (1.51, 1.61) cm.

If a random variable x is distributed uniformly in (x̄−∆I , x̄+∆I), where ∆I is the tolerance, its standard deviation

can be calculated as

σ2
x =

1

2∆I

∫ x̄+∆I

x̄−∆I

(x− x̄)2 dx =
∆2

I

3
. (3)

Thus the uncertainty of the instrument uI , taken as standard deviation σx, is given from the tolerance ∆I by

uI =
∆I√
3
. (4)

∆I is usually read as a half division or calculated from the information from the manufacturer of the instrument.

Remark: The instrumental error is not necessarily random but can be systematic.

Example 3: For the resistor box used in the single arm electric bridge (Fig. 1), the manufacturer provides the

error table as Tab. I. According to the manual, the tolerance of the resistor box is given by ∆I =
∑

i Ri ×αi%+R0,

where Ri is the resistance of the i-th dial, and the residual resistance R0 = 0.02 Ω.

Figure 1. A resistor box.

If one sets the resistor box at 31935.7 Ω, the tolerance is given by

∆I = 30000 Ω×0.1%+1000 Ω×0.1%+900 Ω×0.1%+30 Ω×0.1%+5 Ω×0.5%+0.7 Ω×2%+0.02 Ω = 31.969 Ω , (5)



4

disk multiples ×10000 ×1000 ×100 ×10 ×1 ×0.1

accuracy class α 0.1 0.1 0.1 0.1 0.5 2

Table I. The error table of the resistor box in Fig. 1.

and the uncertainty of the resistor box is

uI =
∆I√
3
= 18.457 Ω = 20 Ω .

The resistance of the resistor box should be written as (3.194± 0.002)× 104 Ω.

Remark: Using scientific notation to present measurement results can keep the number of significant figures correct.

B. The uncertainty from statistics of repeated measurements

We do not require the students to be skilled in the theory of uncertainty in this section. Some knowledge will help

understand the important formulas coming in the following sections.

Let us consider the measurement of the ground truth X and focus on the random error from other than finite

instrument precision. Due to random error, the measurement result x is a random variable. Both X and the

probability distribution of x are unknown, so we can only estimate the uncertainty from a finite series of measurement

results xi of n trials, i = 1, 2, · · · , n.
It is the mathematical theorem, Central Limit Theorem, that enables the estimation of uncertainties. We now

state the theorem roughly as following. For n random variables r1, r2, · · · , rn, the mean value

r̄ =
1

n

n∑
i=1

ri (6)

is apparently a random variable as well. No matter what probability distribution each ri obeys, if they are identically

distributed and if they are independent, in the n → ∞ limit, the probability distribution of r̄ converges to a normal

distribution almost surely. If µ and σ are the mean value (expectation) and the (finite) standard deviation of each ri,

the normal distribution of r̄ has mean µ and standard deviation σ/
√
n.

How does the theorem apply to the analysis of uncertainties? If the experimental condition of measuring X is

well-controlled, we can assume each observation xi is independent and identically distributed. If the systematic error

has been correctly accounted for, the error ∆i = xi −X has a mean zero. Thus when the number of trials n is large

enough, the mean value x̄ converge to X, and the uncertainty taken as standard deviation is given by ux̄ = σ∆/
√
n.

σ∆ = limn→∞
√∑

i ∆
2
i /n is still unknown. To estimate σ∆, we define δi = xi − x̄. We note that∑

i

∆i =
∑
i

xi − nX = nx̄− nX , (7)

x̄ = X +
1

n

∑
i

∆i . (8)

Then we have∑
i

δ2i =
∑
i

(xi −X − 1

n

∑
j

∆j)
2 =

∑
i

(∆i −
1

n

∑
j

∆j)
2 =

∑
i

∆2
i −

2

n

∑
i,j

∆i∆j +
n

n2

∑
i

∆2
i . (9)

Since ∆i are independent and has zero mean, the second term is always zero if i ̸= j. We thus have∑
i

δ2i =
n− 1

n

∑
i

∆2
i . (10)

Then an estimation of σ∆ gives

σ∆ =

√∑
i ∆

2
i

n
=

√∑
i δ

2
i

n− 1
=

√∑
i(xi − x̄)2

n− 1
. (11)
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Now we have the following estimation on x̄ and its uncertainty ux̄

x̄ =
1

n

n∑
i=1

xi , ux̄ =

√∑n
i=1(xi − x̄)2

n(n− 1)
. (12)

Remarks:

1. Note that the standard deviation σ∆ of each measurement xi is a constant of the number of measurement n,

which characterizes the nature of the measurement error distribution. ux̄ = σ∆/
√
n is the standard deviation

of the mean value x̄, which shows how fluctuating x̄ is.

2. Now we see why we need multiple repeats and averages in measurements. The mean x̄ converges to X if the

number of trials is large. And the uncertainty ux̄ scales as o(n−1/2), which decays slowly with n.

3. Because of the central limit theorem, it is safe to assume the error ∆i = xi −X is always normally distributed.

After many trials and averaging, we will not see the difference if it is not a normal distribution.

C. The combined uncertainty of repeated measurements

If we measure a quantity X directly with real instrument n times, the estimation by the mean value can be expressed

as

x̄ = X +∆ = X +∆I +∆R , (13)

where ∆I is the error from the instrument precision, and ∆R is the random error. The uncertainties of ∆I and ∆R

are given by uI and uR, respectively. The uncertainty of the final result is thus a combination of the two sources of

error. If we assume the instrumental and random errors are uncorrelated, we have the following.

The combined uncertainty of n measurements xi can be estimated as

u =
√

u2
I + u2

R , (14)

where uI is the uncertainty from instrument precision given by Eq. (4), and uR is the uncertainty of random

error given by (12).

Remark: If we assume ∆I and ∆R are both normally distributed with zero mean, the sum is also a random

variable of normal distribution. The standard deviation of the sum is given by
√

u2
I + u2

R. The mean of ∆I , however,

cannot be predicted and may not be zero since it can be a systematic error. It is why uI given by (4) does not

have the 1/
√
n factor: The systematic error cannot be reduced by repeating the measurements. Nevertheless, this

unknown systematic error has to be captured by uncertainty. Hence, the combination rule (14) is a convention (by

the International Standards Organization) without rigorous proof.

Example 4: 5 measurements of length with a ruler give the following results: 1.78 cm, 1.75 cm, 1.79 cm, 1.80 cm,

1.75 cm, and the division of the ruler is 0.1 cm. The average gives

l̄ =
1.78 + 1.75 + 1.79 + 1.80 + 1.75

5
cm = 1.774 cm .

The tolerance of the ruler is half a division 0.05 cm, and the instrumental uncertainty is given by

uI =
0.05√

3
cm = 0.03 cm .

The uncertainty from random error is

uR =

√
(1.78− 1.774)2 + (1.75− 1.774)2 + (1.79− 1.774)2 + (1.80− 1.774)2 + (1.75− 1.774)2

5× (5− 1)
cm = 0.01 cm .
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The combined uncertainty is

u =
√

u2
I + u2

R = 0.03 cm .

Finally, the measurement result is expressed as

l = 1.77± 0.03 cm .

Note that the precision of the instrument now dominates the error.

D. The uncertainty of indirect measurements

Not many physical quantities can be measured directly. For instance, the resistance R of a resistor can be measured

from the current I and voltage U across the resistor by Ohm’s law R = U/I. The measurements in I and U both

have uncertainties, bringing uncertainty in the calculated R. Thus we need to calculate the uncertainty of R based

on the uncertainties of I and U .

Consider a general case, where we have m independent direct measurements xi, i = 1, 2, · · · ,m. The uncertainty

of xi is ui. The measurement of y is calculated through a function y = f(x1, x2, · · · , xm). What is the uncertainty

uy of y?

Each quantity xi can have an error of δxi = xi − x̄i. Assuming the error in each measurement is small, we can

estimate the error δy in y by the partial derivatives

δy =

m∑
i=1

(
∂f

∂xi

)
δxi . (15)

If all the errors δxi are normally distributed, the linear combination in Eq. (15) gives another normal distribution.

The standard deviation of δy is given by

σy =

√√√√ m∑
i=1

(
∂f

∂xi

)2

σ2
i . (16)

Here σi is the standard deviation of xi. This can be shown by calculating the sum
∑n

j=1 δy
2
j , where n is the number

of experiments, and j labels different measurement. We have

n∑
j=1

(δyj)
2 =

n∑
j=1

m∑
i=1

(
∂f

∂xi

)2

(δxi,j)
2 + 2

n∑
j=1

∑
i̸=k

(
∂f

∂xi

)(
∂f

∂xk

)
δxi,jδxk,j . (17)

If all the quantities are uncorrelated, we have
∑n

j=1 δxi,jδxk,j = 0 for i ̸= k, and the second term equals zero. By the

definition of standard deviation σi =
√∑n

j=1(x̄i − xi,j)2/(n− 1), we have Eq. (16). Thus we have the following.

The uncertainty uy of a quantity y measured by a function y = f(x1, x2, · · · , xm) is given by

uy =

√√√√ m∑
i=1

(
∂f

∂xi

)2

u2
i , (18)

where ui is the uncertainty of xi given by (14).

If it is easier to calculate the derivatives of ln f than of f , Eq. (18) is equivalent to

uy

y
=

√√√√ m∑
i=1

(
∂ ln f

∂xi

)2

u2
i . (19)
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Function z = f(x, y) Formulas for uz

z = x+ y uz =
√

u2
x + u2

y

z = x− y uz =
√

u2
x + u2

y

z = xy
uz

z̄
=

√(ux

x̄

)2

+

(
uy

ȳ

)2

z =
x

y

uz

z̄
=

√(ux

x̄

)2

+

(
uy

ȳ

)2

z = kx uz = |k|ux

z = xk uz

z̄
=

|k|ux

x̄

z = k
√
x

uz

z̄
=

1

k

ux

x̄

z = sinx uz = | cosx|ux

z = lnx uz =
ux

x̄

z = ex
uz

z̄
= ux

Table II. Uncertainty of commonly used functions.

Figure 2. The circuit to measure the resistance of a resistor.

For convenience, we show a list of commonly used functions as in Tab. II.

Example 5: We measure the resistance of a resistor using the circuit shown in Fig. 2.

Because the voltmeter has a finite inner resistance RV , the resistance R of the resistor is given by

R =
U

I − U/RV
=

RV U

RV I − U
. (20)

The three quantities U , I, RV can all have uncertainty. To calculate the uncertainty of R, we firstly need to calculate

the derivatives of R

dR

R
=

(
1

U
+

1

IRV − U

)
dU +

(
1

RV
− I

IRV − U

)
dRV − RV

IRV − U
dI . (21)

Then the uncertainty of R is given by

uR

R
=

√(
1

U
+

1

IRV − U

)2

u2
U +

(
1

RV
− I

IRV − U

)2

u2
RV

+

(
RV

IRV − U

)2

u2
I . (22)

If one measurements gives RV = 1000 Ω, U = 7.0± 0.2 V, I = 35± 3 mA, and the uncertainty uRV
can be neglected,



8

we have

R =
1000× 7

1000× 0.035− 7
Ω = 250 Ω .

And

uR = 250×

√(
1

7
+

1

1000× 0.035− 7

)2

× 0.22 +

(
1000

1000× 0.035− 7

)2

× 0.0032 Ω = 28 Ω .

The final result is

R = (2.5± 0.3)× 102 Ω .

E. The uncertainty of linear least-squares fitting

Some physical quantities can be linearly related, and some important quantities are measured from the coefficients.

Consider n data points (x1, y1), (x2, y2), · · · , (xn, yn) obeying a linear relation y = kx+ b. Because of errors, they do

not lie on a straight line perfectly. How do we estimate k, b, and their uncertainties?

To estimate k and b, we can find a line which is as close as possible to all the data points. Specifically, we define

the mean-square error

ϵ(k, b) =

n∑
i=1

(yi − kxi − b)2 (23)

to measure the ”closeness” of the line to the data points. ϵ = 0 if they are perfectly lining. The best estimations of k

and b are those minimizing ϵ. Taking ∂ϵ/∂k = ∂ϵ/∂b = 0, we have the equations

∂ϵ

∂k
= −

n∑
i=1

2(yi − kxi − b)xi = 0 , (24)

∂ϵ

∂b
= −

n∑
i=1

2(yi − kxi − b) = 0 . (25)

They can be solved to give the following.

For n data points (x1, y1), (x2, y2), · · · , (xn, yn) obeying a linear relation y = kx+b, the least-square estimations

of k and b are

k =
n
∑

i xiyi −
∑

i xi

∑
j yj

n
∑

i x
2
i − (

∑
i xi)2

=
xy − x̄ȳ

x2 − x̄2
, b = ȳ − kx̄ . (26)

If we assume the residue yi − kxi − b is a normally distributed variable centered at zero, we can estimate the

uncertainties of k and b through the uncertainties of each point and simple error propagation. Lengthy calculations

give

uk =

√
1

n(x2 − x̄2)
· ϵ

n− 2
, ub =

√
x2

n(x2 − x̄2)
· ϵ

n− 2
. (27)

We often talk about the correlation coefficient r in linear least-squares fitting, which is defined as

r =
xy − x̄ȳ√

(x2 − x̄2)(y2 − ȳ2)
. (28)

|r| = 1 if the points are perfectly lining. r = 0 means x and y are uncorrelated.

Remark: According to (27), the uncertainty in intercept b can be large.
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Example 6: We can measure the permittivity of air εair by measuring the capacity between two parallel plates.

Consider two metal plates with area S0 separating with distance D. The capacity of the two plates is

C =
εairS0

D
. (29)

In real experiments, the wires and other parts of the circuit also contribute to the measured capacity. C = εairS0/D+

CD where CD is the residue capacity. If we change D and measure C, C and 1/D should show a linear relation. The

slope of the line is εairS0, from which we can measure εair.

D/mm 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900

C/pF 34.1 32.4 30.9 29.6 28.6 27.5 26.8 26.0 25.4 24.8

Table III. The measured capacity between two parallel plates with changing distance.

From one experiment, we got S0 = 2.165 × 103mm2 and the data in Tab. III. Fitting the measured data with

C = kD−1 + CD gives

k =
CD−1 − C ·D−1

D−2 −D−1
2 = 19.724 pF ·mm , CD = C − kD−1 = 14.433 pF .

The uncertainties of k and CD are given by Eq. (27).

uk =

√
ϵ

80[D−2 − (D−1)2]
= 0.11 pF ·mm , uCD

= uk

√
D−2 = 0.081 pF .

The measured results are

k = εairS0 = 19.7± 0.1 pF ·mm , CD = 14.43± 0.08 pF .

Then we calculate the permittivity of air as

εair = k/S0 = (9.11± 0.05)× 10−12 F/m ,

which is close to the more precise value εair = 8.854× 10−12 F/m.

We can test the linearity of the data by calculating the correlation coefficient from Eq. (28),

r =
CD−1 − C ·D−1√

(D−2 −D−1
2
)(C2 − C

2
)

= 0.99988 .

r is close to 1, and the data are indeed linear (Fig. 3).

0.6 0.7 0.8 0.9 1
1=D (mm!1)

25

30

35

C
(p

F
)

data
fitted curve

Figure 3. The measured capacity between two parallel plates with changing distance. Circles represents the measured data,

and red line shows the fitted line with C = 19.7/D + 14.43 (pF).
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