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Pattern formation in biology

Turing pattern (1952)

Activator Inhibitor

decompose

∂A

∂t
= DA∇2A+ f(A, I)

∂I

∂t
= DI∇2I + g(A, I)

(Wikipedia.org)
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Pattern formation in biology

Density-dependent mobility induced pattern

Particles mobility ∂ρ

∂t
= ∇[D(ρ)∇ρ]

(2011, Chenli Liu, Xiongfei Fu, et al, Science)
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Patterns from interactions of two species

Interactions among two species

A B

?

?

? ?
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Patterns from interactions of two species

Run-and-tumble motion of E. coli

Speed v ∼ 10µm/s

Tumbling rate λ ∼ 1s−1

Tumbling duration δ ∼ 0.1s

∂ρ

∂t
= ∇ · (D∇ρ) +∇

[
v

dλ
∇
(

v

1 + λδ
ρ

)]
.

Zhao Yongfeng (HKU Physics) Run-and-tumble & DDM Octobor 24, 2016 9 / 41



Patterns from interactions of two species

Linear stability analysis

∂ρa
∂t

=∇
[

v2
a

dλa(ρb)(1 + λa(ρb)δa)
∇ρa −

v2
aδaλ

′
a(ρb)ρa

dλa(ρb)(1 + λa(ρb)δa)2
∇ρb

]
,

∂ρb
∂t

=∇
[

v2
b

dλb(ρa)(1 + λb(ρa)δb)
∇ρb −

v2
b δbλ

′
b(ρa)ρb

dλb(ρa)(1 + λb(ρa)δb)2
∇ρa

]
.

Bifurcation condition

λ′a(ρb0)λ′b(ρa0) >
(1 + λa(ρa0)δa)(1 + λb(ρb0)δb)

δaδbρa0ρb0
.

Eigenvector

(
v2
a

dλa(ρb0)(1 + λa(ρb0)δa)
+ η

)
δρa =

v2
aδaλ

′
a(ρb0)ρa0

dλa(ρb0)(1 + λa(ρb0)δa)2
δρb .
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Patterns from interactions of two species

Two general principles

λ′a(ρb0)λ′b(ρa0) >
(1 + λa(ρa0)δa)(1 + λb(ρb0)δb)

δaδbρa0ρb0
=⇒

λ′a(ρb0) > 0, λ′b(ρa0) > 0 or λ′a(ρb0) < 0, λ′b(ρa0) < 0.

λ′a(ρb0) > 0, λ′b(ρa0) > 0: mutual inhibition
δρa ∝ δρb: co-migrating pattern.

λ′a(ρb0) < 0, λ′b(ρa0) < 0: mutual activation
δρa ∝ −δρb: segregating pattern.

The similar conclusions hold for density dependent speed (from Curatolo)
or tumbling duration.
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Patterns from interactions of two species

Experiments - mutual inhibition

Zhao Yongfeng (HKU Physics) Run-and-tumble & DDM Octobor 24, 2016 12 / 41



Patterns from interactions of two species

Experiments - mutual activation
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Patterns from interactions of two species

A question

How do we know the designed system works as we expected?

=⇒ How can we measure the speed/tumbling rate/tumbling duration of
E. coli ?
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Differential dynamic microscopy
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Differential dynamic microscopy

Why not tracking?

Special equipment for 3D measurement.

Difficult to measure tumbling duration.

Valid only for low density.

Laborious.

Poor statistics (∼ 102 cells).

If I am telling you there is a method:

Usual equipment automatically doing 3D measurement.

Easier to measure tumbling duration.

Valid for high density.

Easy.

Good statistics (� 104 cells).
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Differential dynamic microscopy

Intermediate scattering function (ISF)

f(q, τ) =
〈∆ρ(q, t)∆ρ∗(q, t+ τ)〉e
〈∆ρ(q, t)∆ρ∗(q, t)〉e

.
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Differential dynamic microscopy

Differential dynamic microscopy

The principle of differential dynamic microscopy

It can be proven for ergodic point particles that

f(q, τ) =
〈∆ρ(q, t)∆ρ∗(q, t+ τ)〉t
〈∆ρ(q, t)∆ρ∗(q, t)〉t

= p(q, τ) ,

which is the solution of corresponding master equation with initial
condition to be p(x, t) = δ(x).

f(q, τ) can be calculated from image intensity I(q, t), via

g(q, τ) = 〈|I(q, t+ τ)− I(q, t)|2〉t = A(q)(1− f(q, τ)) +B(q) .

p(q, τ) can be obtained from solving the master equation.
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Differential dynamic microscopy

Master equation of run-and-tumble particles

∂p(x,v, t)

∂t
= D∇2p− v · ∇p− λp+

λ

Ω

∫
p(x,v′, t)dΩ′ .

p(q, v, s) =
arctan(qv/(s+Dq2 + λ))

qv − λ arctan(qv/(s+Dq2 + λ))
.

Adding a distribution of v and a contribution of dead cells,

f(q, τ) = (1− α)e−Dq
2τ + α

∫ ∞
0

p(q, v, t)P (v) dv ,

where

P (v) =
vZ

Γ(Z + 1)

(
Z + 1

v̄

)Z+1

e−(Z+1)v/v̄ .
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Differential dynamic microscopy

Simulation

512×512 pixels.

Pixel size corresponds to
real microscopy systems.

Depth of fields ∼ 40 µm.

Particle number ∼ 104 .
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Differential dynamic microscopy

Fitting result of simulation
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Differential dynamic microscopy

A second fitting with fixed parameters
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Differential dynamic microscopy

Fitting result of experiment of wild type E. coli
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Differential dynamic microscopy

Fitting result of experiment of ∆CheY E. coli
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Differential dynamic microscopy

What is missing?

Finite tumbling duration.

Rotational diffusion.

Active rotational diffusion causing bias in tumbling.

Lévy’s walk (power law distribution in running time).
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Differential dynamic microscopy

Simulation with finite tumbling duration
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Differential dynamic microscopy

Finite tumbling duration

Master equation

∂pr(x,v, τ)

∂τ
= D∇2pr − v · ∇pr − λpr +

pt
δΩ

,

∂pt(x, τ)

∂τ
= D∇2pt + λ

∫
pr(x,v

′, τ)dΩ′ − pt
δ
.

Intermediate scattering function

p(q, v, s) =
1

(δ(s+Dq2) + 1)(δλ+ 1)(
(δ(s+ λ+Dq2) + 1)2 arctan(qv/(s+ λ+Dq2))

qv(δ(s+Dq2) + 1)− λ arctan(qv/(s+ λ+Dq2)
+ δ2λ

)
.

f(q, τ) = (1− α)e−Dq
2τ + α

∫ ∞
0

p(q, v, t)P (v) dv .
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Differential dynamic microscopy

Fitting with tumbling duration
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Differential dynamic microscopy

Fitting with tumbling duration
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Run-and-tumble motion with obstacles

Lattice model

Hopping

h

Tumbling

λ
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Run-and-tumble motion with obstacles

Lattice model

Blocked

Escape
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Run-and-tumble motion with obstacles

Mean field approximation

c: Concentration of obstacles.

Master equation

∂pr(x, v̂, t)

∂t
=−∇ · (v̂hpr)− λpr − γd(c)hcpr +

λ(1− c)
Ω

ρM ,

∂pb(x, v̂, t)

∂t
=− λpb +

λc

Ω
ρM + γd(c)hcpr ,

ρM =

∫
(pr + pb) dΩ .

Effective diffusion coefficient

Deff =
h2λ(1− c)

d[hcγd(c) + λ]2
.
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Run-and-tumble motion with obstacles
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Run-and-tumble motion with obstacles
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Summary and future work

Summary

New mechanism for pattern formation

Mutual inhibition of mobility: co-migrating pattern.

Mutual activation of mobility: segregating pattern.

New development of differential dynamic microscopy

Tumbling rate can be measured for run-and-tumble particles with
instantaneous tumbling.

Tumbling duration can be measured for run-and-tumble particles if
the tumbling rate is known.

The motion of E. coli may have some ingredients we haven’t known.

New attempt for E. coli motion with obstacles

A valid lattice model.

A mean field approximation.
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Summary and future work

Future work

Pattern formation

Experiments: tuning the pattern.

Three-species, four-species, ...: more complex network motif.

Growth, death, ...: more kinds of interactions.

Differential dynamic microscopy

Way to specify the tumbling rate of run-and-tumble particles with
finite tumbling duration: multi-scale imaging?

Measure rotational diffusivity.

Effect of Levy’s walk.

E. coli moving in agar

Existence of better continuous approximation: calculation of γd(c).

Possibility of DDM.
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Summary and future work

What’s more?

Applying DDM to study the motion of other ”particles”: mammalian
cells, fishes, birds, sheep, humans, ...

Studying their collective behaviour.

Finding principles in coordination and self-organization.

Answering questions in organ development, morphogenesis, microbe
infection, ...
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Summary and future work
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Summary and future work

Case no obstacle: compare with continuous model

Master equation

∂P (x, ei, t)

∂t
=hP (x− ei, ei, t)− hP − λP +

λ

2d

∑
i

P (x, ei, t) .

Mean square displacement - lattice model

〈∆x2(t)〉 =

(
2h2

dλ
+
h

d

)
t+

2h2

dλ2
(e−λt − 1) .

Mean square displacement - continuous model

〈∆x2(t)〉 =
2v2

dλ
t+

2v2

dλ2
(e−λt − 1) .

Necessary condition of lattice model to be valid: h� λ/2 .
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Summary and future work

Numerical inverse Laplace transformation - Week’s method

L{f(t)} = F (s) .

Möbius transformation: s = σ − b z+1
z−1 .

Expand the function:

(s− σ + b)F (s) =
2b

1− z
F

(
σ − bz + 1

z − 1

)
=

∞∑
n=0

anz
n .

Laplace transformation of Laguerre polynomial: L[Ln(2bt)] = (s−2b)n

sn+1 .

L−1[F (s)] = f(t) =
∑∞

n=0 ane
(σ−b)tLn(2bt) .

an =
1

2π

∫ 2π

0
e−inθ

2b

1− eiθ
F

(
σ − be

iθ + 1

eiθ − 1

)
dθ .
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