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Systems biology focuses on how the biochemical regulations determine the func-
tions of biological systems. Nowadays we are able to test many systems biology
hypotheses with synthetic biology, and push the knowledge of biological sys-
tems into a new level. Pattern formation and collective motion are important
functions for some biological systems, as they help explain the morphogenesis
of multicellular organisms. Previous work has shown that patterns can emerge
from the regulations of cell motion. However, the precise underlying mechanisms
remain an open question.

I attacked this question for E. coli systems. I first investigated the motion of E.
coli , which can be described as run-and-tumble motion. It consists of straight
runs alternating with frequent random tumbling. The run-and-tumble motion
in liquid has been well studied. I revised the previous results, and showed
the effect of density-dependent motility regulations on E. coli collective motion.
We found density-enhanced motility causes cells to segregate from signals, while
density-inhibited motility causes cells to co-migrate with signals. We also found
two species with mutual activation of motility can form segregating patterns,
while mutual inhibition of motility helps form co-migrating patterns.

However, the environment for E. coli motion is often some polyporous materials,
with a lot of obstacles. How the obstacles affect the macroscopic motion of
microbes is still an open question. Thus a simplified stochastic model described
by master equation had been established to describe cells moving in agar, and
lattice Monte-Carlo simulations have been carried out. This model showed the
same feature as the observations in experiments that cells with higher tumbling
rate can move faster in semi-solid agar, in contrast to the case in liquid. The
model suggested the mechanism to be that running cells are more easily blocked
by the obstacles, while tumbling events help cells escape from the blocking
obstacles.

Another problem in studying motion of E. coli is how to measure their mo-
tion in experiments. A novel method called differential dynamic microscopy
(DDM), first used to characterize the diffusion of colloids, was adapted to mea-
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sure parameters of run-and-tumble motion. DDM makes use of the information
contained in the auto-correlation function of Fourier transformed time-lapse
images, which can be compared with their theoretical predictions for run-and-
tumble particles to extract relevant experimental parameters. The difficulty of
lacking a mathematical expression of the solution in real time was overcome by a
numerical inverse Laplace transform, making use of the classic Weeks’ method.

To test this method, data generated from simulations were used, showing that
for ideal run-and-tumble particles, both swimming speed and tumbling rate can
be measured. Experimental data using AB1157 E. coli have been analysed, and
the corresponding parameters were measured. The wild type and CheY knock-
out strains were compared, and their difference supports the utility of our new
development.

(An abstract of 451 words)
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Chapter 1

Introduction

1.1 Systems biology and synthetic biology

The development of molecular biology has brought the study of biological sys-
tems into a new era. Since the discovery of the central dogma of molecular
biology by Francis Crick in 1956 [1], biologists have devoted a lot of efforts
in finding the mechanisms of underlying biological processes at the molecular
level. Researchers found that regulation pathways comprising protein-protein
interactions and protein-DNA interactions are critical in understanding biolog-
ical process [2]. Until now, many protein interactions and regulation pathways
have been discovered, and have been recorded in databases for researchers to
study [3, 4, 5]. And the number of discovered pathways is still increasing.

However, the study of biology will not end up with finding all the pathways in
biological systems. The pathways are coupled and connected, forming complex
network with feedbacks and feedforwards, which cannot be understood simply
and intuitively. This is where the systems biology begins to play a role.
Instead of finding new specific pathways, systems biology aims to find the uni-
versal principles behind biological systems, to understand how the topology of
regulation network determines its function [6].

Studying complex networks is not easy, especially for large networks, as they are
usually many-body problems with strong and complex interactions. A natural
idea is borrowed from electrical engineering to deal with such networks. In much
the same way as one treats electric circuits, we try to decompose the networks
into small but functional modules called motifs [6]. With the knowledge of
motifs, we can analyse the complex network easily, and even design artificial
biological systems to have advanced functions. Although one may argue the
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2 CHAPTER 1. INTRODUCTION

existence of motifs in biological system from theoretical aspect [7], this idea is
still worth exploring.

Theoretical work is needed in studying motifs, as even for small motifs, coupled
feedbacks may be hard for people to understand intuitively. And theory can also
help us to find the possible network topologies for a given function. Some mo-
tifs have already been identified in previous theoretical work [8, 9, 10]. Several
quantitative methods have been developed, involving mathematical modeling
and physics. Nonlinear dynamics was often used in describing biochemical re-
actions [6]. Probability theory played an important role in studying noise in
biological systems [11]. To understand topics like immunology [12] and collec-
tive behaviour of cells [13], statistical physics is also needed.

As science, systems biology cannot live without experimental evidence. Obser-
vation and bioengineering can provide some of the evidence. These methods
can be considered as reverse-engineering, as they are trying to understand the
unknown functions of an existing system. But we can also perform forward-
engineering to biology, which is called synthetic biology [14]. In synthetic
biology, we design artificial genetic circuits to perform the functions we require.
Such circuits can be simple and decoupled from the natural ones, and are easier
to study in experiments. Hence synthetic biology is powerful in studying the
network motifs, providing direct evidence to systems biology, and helping us to
understand the natural biological systems. The potential of synthetic biology is
vast [15].

1.2 Morphogenesis and pattern formation

Morphogenesis is one of the topics that systems biologists and synthetic bi-
ologists are interested in. Almost every multicellular organism develops from a
single cell into a large group of cells with spatial inhomogeneous structure with
regular patterns, such as digits, sweat pores, lung, and kidney [16, 17]. How the
symmetry is broken during morphogenesis is of great interest of biologists and
physicists.

In physics, such transition from a spatial homogeneous state into an inhomoge-
neous state is called pattern formation, and is particularly rich in systems far
away from equilibrium [18]. As dissipative systems, pattern formation systems
need to exchange energy and entropy with environment to remain stable. Be-
sides the biological systems, patterns are quite common in convection systems,
diffusion-reaction systems, and nonlinear optics [18]. A well-known example is
the Rayleigh-Bénard convection, which appears when a fluid is placed between
two flat horizontal plates of constant temperature, but with a finite tempera-
ture difference between the plates. The temperature difference and gravity drive
fluid convection, which results in cell-like patterns.
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Alan Turing in his famous paper in 1952 [19] provided a possible mechanism for
pattern formation in morphogenesis, which is the famous Turing pattern. The
Turing pattern contains an ”inhibitor” and an ”activator”, forming a negative
feedback loop. If the diffusion of the inhibitor is slower than the activator,
the spatial homogeneous state may lose its stability and a pattern will emerge.
Recently, a group reported that the formation of digits may be a result of the
Turing pattern [20].

Besides the Turing pattern, the regulation of cell motion can also result in a
spatial inhomogeneous structure, like the previous work in M.E.Cates, 2010 [21]
and in Chenli Liu, 2011 [22]. If the motion of a given cell depends on the rest of
the population via a signalling molecule, and gets inhibited in the high density
region, the spatial homogeneous state will lose its stability. A ring pattern has
been observed in an engineered E. coli system in experiments [22]. Another
example for the mammalian cell is the formation of a stripe pigment pattern in
zebrafish. Researchers [23] suggested the stripe pattern was formed via cell-cell
interactions of motility. Following these ideas, the final objective of this work
is to explore the relation between motility regulations and patterns in E. coli
systems. But firstly, we need to understand the motion of E. coli .

1.3 E. coli motion and run-and-tumble model

The study on the motion of E. coli in liquid dates back to 1972 [24]. It is
often described as run-and-tumble motion. H.C. Berg tracked the motion
of E. coli in three dimensions in liquid. He found that the trajectory of the
cell consists of successive line segments. In each segment, E. coli moves with
almost constant speed and direction, and then randomly ”tumbles” to change
its direction. He also measured the mean speed and the mean run length, and
found them to be dependent on the specific strain of E. coli . He reported the
mean speed to be of the order of 10µm/s, the mean time between two tumbles
of the order of 1s, and the tumbling duration to be around 0.1s. In the later
research, people found that the change of the cell direction in tumbling events
is biased, with a peak around 60◦ [25].

The biochemical process controling the E. coli motion has been identified in
early years, as byproducts of studying bacterial chemotaxis [26]. E. coli is
propelled by its flagella, which consists of several helical flagellar filaments [27].
Each filament connects with a molecular motor which can spin either clockwise
(CW) or counter clockwise (CCW). If the motors spin CCW, the filaments
can form a bundle and propel the cell along a relatively straight trajectory.
Otherwise, the filaments cannot form a bundle, and the forces exerted by the
filaments pushing the fluid compete randomly, distracting the cell and resulting
in a sudden tumble, as shown in Figure 1.1.
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Torque

Torque

Torque

Figure 1.1: A sketch of a tumbling E. coli cell. The clockwise spinning filaments
provide a global torque, causing the cell to rotational diffuse actively.

CheY

CheY-P

Motor rotating CW

CheZ

Receptor

Attractant

CheA

CheA-P

CheBCheB-P

Figure 1.2: A sketch of biochemical pathways of E. coli chemotaxis.
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The underlying pathways are sketched in Figure 1.2. The switch of the rotating
direction of the motors between CW and CCW is controlled by a signalling
protein called CheY [27, 28, 29]. The phosphorylated CheY can bind to the
motors and change their direction from CCW to CW, switching the cell from
running to tumbling. The CheY phosphorylation process can be activated by
the phosphorylated CheA, and CheA is phosphorylated by the upstream sig-
nal from chemoattractants or chemorepellents. The phosphorylated CheA can
also activate another protein CheB to inhibit the activation of CheA, forming
a negative feedback loop. This kind of negative feedback loop with buffer node
has been identified as a network motif for an adaptive response [8], making the
phosphorylation of CheY to be a transient process [30]. Another chemotactic
signalling protein CheZ can help dephosphorylate CheY and make the cell re-
cover quickly from tumbling. Thus the tumbling events last for a short time
with the mean duration around 0.1s.

Figure 1.3: A sketch of run-and-tumble model.

According to these findings, a simplified run-and-tumble microscopic model can
be established, as sketched in Figure 1.3. In this model, the particle is running
with a constant speed, and keeping the direction during the running phase.
The tumble events are measured by Berg, et al, 1972 [24] to be Poisson process
in time. The tumbling events may take some time, or in a simple model be
assumed as instantaneous. The distribution of the cell direction change after
tumbling can be assumed isotropic in a simple model, or to obey some distri-
bution function. With the microscopic models, we can coarse grain to have
macroscopic models to describe the time evolution of particle density, and to
study the pattern formation induced by motility regulations. The microscopic
models also enable us to measure the parameters such as speed and tumbling
rate, with the differential dynamic microscopy method.
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1.4 Differential dynamic microscopy

How to quantitatively measure the microscopic motion of E. coli is an important
problem in both the theoretical and the experimental study. Particle tracking
has been developed as a feasible method [31]. However, it has certain limita-
tions. Firstly, due to the difficulty of three-dimensional imaging, the tracking
system is often restricted to two-dimensional systems, making it hard to directly
study the three-dimensional systems. Secondly, the high density of particles will
increase the chance of intersections of particle trajectories, making the tracking
results inaccurate. But studying the high density systems can be important
to understand their collective behaviors [22]. Finally, the constraints in cell
density, image size, and computational cost will limit the sampling number to
∼ 103, which may give a poor statistics. Especially for the three dimensional
systems, the tracking microscopes need to track single cells, and the statistics
will be horrible.

Differential dynamic microscopy (DDM) is a novel way of measuring the
microscopic parameters of the motion of particles, first introduced in 2008 [32] to
study diffusive colloidal particles, and later generalized to the study of bacterial
motion by L. G. Wilson, et al [33] and V. A. Martinez, et al [34]. This method
makes use of the information encoded in the auto-correlation function of time-
lapse images, thus has a lot of advantages compared with the particle tracking.
As long as nonlinear effect in the light absorption hasn’t appeared, this method is
valid for arbitrary high density of particles. So we can expect a higher sampling
number (> 104) and a better statistics. The special equipment for this method
is just a high speed camera with the frame rate of the order of 102. Then the
processing of the data can be accomplished with our algorithm in any computer.

In this thesis I adapted the DDM method for the study of the bacterial motion,
especially for E. coli . The previous works have successfully measured the speed
of bacteria along with their diffusion constant due to thermal Brownian motion.
In this thesis, I will present a method to also characterize the tumbling rate of
E. coli .

1.5 Project objective and thesis structure

The final objective of this study is to investigate how the cell-cell interactions
of motility regulate the bacterial pattern formation. In studying this question,
we need to investigate the microscopic models of bacterial motion, and coarse
grain the microscopic models to get macroscopic models for analysis. We also
need to develop the experimental techniques for observation and measurement.
Solving these problems is the major content of this thesis.



1.5. PROJECT OBJECTIVE AND THESIS STRUCTURE 7

I have already introduced the background and the general concepts of this work.
In Chapter 2, I will start from summarizing the previous work of a simple model
for the run-and-tumble motion to present the techniques used in Chapter 3.
In Chapter 3, I will provide new models to analyse the influence of tumbling
duration and rotational diffusion to the run-and-tumble motion.

In Chapter 4, I will present some theoretical results of the run-and-tumble
particles moving in the environment with obstacles, which hasn’t been reported
in the literature. As in pattern formation experiments, the cells are in the semi-
solid agar which can trap the cells while moving, the influence of the obstacles
need to be taken care of.

Chapter 5 will present the current progress and some preliminary results we have
in studying the effects of the cell-cell interactions to the pattern formation. The
originality of the theoretical work belongs to our collaborators. I worked for the
fluorescence imaging setup in the experiments. As the project is still on-going
when this thesis is finished, this chapter will be a brief introduction.

To characterize the motion of our engineered E. coli used in this study, I adapted
the differential dynamic microscopy method to measure the tumbling rate and
tumbling duration. Although it has been used for measuring Brownian particles
and straight swimmers, I didn’t find a rigid proof for the theory of the differential
dynamic microscopy, so I will provide one in Chapter 6. This chapter will need
the results in Chapter 2 and 3. Chapter 7 will present the tests of this method
using the simulation data, and the preliminary experimental tests will be present
in Chapter 8.

Finally, in Chapter 9 I will discuss the results and present the future plan of
this study. The appendix will be the supplementary figures and the technical
reference for the DDM algorithm and codes.
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Chapter 2

A simple model for
run-and-tumble particles

2.1 The master equation

We first consider the non-interacting particles, so that the probability distribu-
tion reduce to computing p(x, v̂, t) of finding a single particle at the position
x and the time t, with the velocity pointing in the direction of the unit vector
v̂, as the state of a particle is fully determined by its position and momentum.
The motion of the particle can be considered as a continuous Markov process,
so the time evolution of the probability density will satisfy the corresponding
differential equation, called master equation.

For a simple model of the run-and-tumble particles with Brownian diffusion, in
which we assume instantaneous and isotropic tumbling, the master equation is

∂p(x, v̂, t)

∂t
= ∇·[D∇p(x, v̂, t)]−∇·[vp(x, v̂, t)]−λp(x, v̂, t)+ λ

Ω

∫
p(x, v̂′, t) dΩ′ ,

(2.1)
where ∇ acts on the spatial coordinates. The ∇ · (D∇p) term is given by the
Fick’s law of diffusion, with diffusion coefficient to be D. −∇ · (vp) is the
contribution of the straight motion. Here v may be a function of the spatial
coordinates. −λp is the rate at which a particle changes its heading into another
one, and λ

Ω

∫
p dΩ′ is the rate at which the particles from all other directions

changing back to the direction of v. Here λ
∫
p dΩ′ is the fraction of particles

that is tumbling at position x and time t. As we are assuming isotropic tumble,
the tumbling particles has uniform probability to enter a random direction, so
this term is divided by Ω, which denotes the total solid angle, for the rate of

9
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a specific direction v̂. dΩ is the infinitesimal element of solid angle. In three-
dimensional space with spherical coordinates, Ω = 4π and dΩ = sin θ dθdφ.

By giving an initial probability distribution and a proper boundary condition,
the time evolution of the probability distribution function is determined by
the master equation, and gives the description of the particle motion. For N
particles, we can formally define the macroscopic density of the particles ρM to
be

ρM (x, t) = Np(x, t) = N

∫
p(x, v̂′, t) dΩ′ , (2.2)

where p(x, t) is the spatial probability distribution. If the direction of v is
labelled in three-dimensional spherical coordinates, the last integration reads∫ 2π

0

dφ

∫ π

0

p(x, θ, φ, t) sin θ dθ . (2.3)

2.2 Moment expansion and diffusive limit

In practice, we are often more interested in the time evolution of the macroscopic
particle density, rather than the full microscopic probability distribution. Direct
integration of (2.1) is difficult, and an explicit closed exact equation for the
density field does not exist. But for the large spatio-temporal scales, we can
seek for a diffusive limit of (2.1) to obtain an effective equation of the density
field.

Here I follow the method in M.E. Cates, 2013 and A.P. Solon, 2015 [35, 36].
The idea is to expand the angular dependence of p(x, v̂, t) with respect to v̂ to
get an equation for the first order moment of p, and then do the approximation.
The expansion reads (summation on the repeated indices)

p =
ρM
Ω

+ Jiv̂i +Qij

(
v̂iv̂j −

δij
d

)
+ Θ[p] . (2.4)

The basis tensors (the bracket in the subscript means summation over all the
permutations of the indices inside)

Mi1i2···il = v̂i1 v̂i2 · · · v̂il+
[l/2]∑
j=1

(−1)jΓ
(
l + d

2 − j − 1
)

j!(l − 2j)!4jΓ
(
l + d

2 − 1
)δ(i1i2 · · · δi2j−1i2j v̂i2j+1

· · · v̂il)

(2.5)
are orthogonalized from the l-th power functions of v̂, and are linear combi-
nations of the d-dimensional spherical harmonics with the same degree of l.
Thus they are eigenfunctions of the Laplace-Beltrami operator on the d − 1
dimensional unit sphere ∆v̂ with the eigenvalues l(l + d− 2).
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Noticing the following relations:∫
v̂i dΩ = 0 , (2.6)∫
v̂iv̂j dΩ =

Ω

d
δij , (2.7)∫

v̂iv̂j v̂k dΩ = 0 , (2.8)∫
v̂iv̂j v̂kv̂l dΩ =

Ω

d(d+ 2)
(δijδkl + δjkδil + δikδjl) , (2.9)

· · ·∫
v̂i1 v̂i2 · · · v̂i2l−1

dΩ = 0 , (2.10)∫
v̂i1 v̂i2 · · · v̂i2l dΩ =

Γ (d/2) Γ (l + 1/2) Ω

(2l)!
√
πΓ(l + d/2)

δ(i1i2 · · · δi2l−1i2l) , (2.11)

we can multiply Mi1i2···il to the master equations (2.1) and do the integration
on all the directions of v̂. For the first three terms in the expansion (2.4), we
have

∂ρM
∂t

=− Ω

d
∇i (vJi) +∇i(D∇iρr) , (2.12)

∂Ji
∂t

=− 1

Ω
∇i(vρM )− 2

d+ 2
∇j (vQij) +∇j (D∇jJi)− λJi , (2.13)

∂Qij
∂t

=− d+ 2

2
Bijkl∇k (vJl) +∇k (D∇kQij)− λQij −∇k (vχijk) , (2.14)

with

Bijkl =
1

d+ 2

(
δikδjl + δilδjk −

2

d
δijδkl

)
, (2.15)

χijk =

∫
Mij v̂kΘ[p] dΩ . (2.16)

In the large temporal scales (t � 1/λ), we can assume the moments of or-
der higher than one, which are the rapid modes, to reach their steady states.
∂Qij/∂t = ∂Ji/∂t = 0. Then from (2.14), we have Qij ∼ o(∇). From (2.13),
we have

Ji =− 1

λΩ
∇i(vρM )− 2

(d+ 2)λ
∇j(vQij) +

1

λ
∇j(D∇jJi)

=− 1

λΩ
∇i(vρM ) + o(∇2) . (2.17)

In the large spatial scales, the spatial derivatives of order higher than o(∇2) can
also be neglected. Thus we can get a closed partial differential equation for the
density field

∂ρM
∂t

= ∇i
[ v
dλ
∇i(vρM )

]
+∇i(D∇iρr) , (2.18)
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which is the well-known [37] diffusive limit of the original master equation.

If all the parameters are independent of the spatial coordinates, we find the
effective diffusion coefficient of the run-and-tumble particles in d-dimensional
space

Deff = D +
v2

λd
. (2.19)

Without tumbling, the particles should show ballistic motion with the mean
square displacement 〈∆x2〉 ∝ t2, and have an infinite effective diffusion coef-
ficient. However, the tumbling events slow down the motion of the particles
in the large temporal scales from 〈∆x2〉 ∝ t2 to 〈∆x2〉 ∝ t, and a finite effec-
tive diffusion coefficient appears. Thus a run-and-tumble particle resembles a
Brownian particle in the large spatio-temporal scales, with an effective diffusion
coefficient dependent on the dimension of the space.

2.3 Chemotaxis flux

Here I would like to present an example to show what information we can obtain
from the diffusive limit. Comparing (2.18) with the continuity equation

∂ρM
∂t

= −∇ · J , (2.20)

we have the flux of the particles to be

J = −D∇ρM −
v∇(vρM )

λd
. (2.21)

The first term is still the contribution from the Fick’s law of diffusion. The
second term, if v depends on the concentration of some chemical a(x), which is
a function of the spatial coordinates v = v(a) = v(a(x)), can be written as

v∇(vρM )

λd
=
v2

λd
∇ρM +

vv′(a)ρM
λd

∇a (2.22)

The first term is a contribution to diffusion from the run-and-tumble mechanism.
However, the second term shows a flux of particles proportional to the gradient
of an external field

Jchemo = −vv
′(a)ρM
λd

∇a . (2.23)

If v′(a) > 0, the chemical increases the speed of particles, we have Jchemo ∝
−∇a. The particle will move in the opposite direction with the increasing chem-
ical concentration, causing particles to move towards the low concentration area.
Similarly, if v′(a) < 0, the particles will move towards the high concentration
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area. Hence, it shows a possible mechanism of chemotaxis. Whether a chemical
can increase or decrease the particle speed determines whether the chemical is
chemoattractant or chemorepellent.

Alternatively, a direction dependent tumbling rate λ = λ(v̂) = λ0 +λ1v̂ ·∇a can
also bring a flux proportional to the gradient of the chemotactant and provide
a possible mechanism for chemotaxis.

2.4 Solution in three-dimensional free space

A solution of (2.1) can give us all the information of the system, but it is
hard to solve the general equation without assumptions. Luckily, If D, v, and
λ in (2.1) are constants, we can get a solution of the master equation in the
free space, which means the size of the system is taken to be infinity and
limx→∞ p(x, v̂, t) = 0. We take the isotropic initial condition to be propor-
tional to the Dirac delta function, p(q, v̂, t = 0) = δ(x)/Ω. The initial condition
is not only for simplicity. The practical significance of this initial condition will
be seen in Chapter 6 in the theory of the differential dynamic microscopy.

Solving the master equation directly is often difficult. In the following discus-
sion, we will consider the Fourier transformed distribution defined as

p(q, v̂, t) =

∫
p(x, v̂, t)e−iq·x d3x , (2.24)

p(x, v̂, t) =
1

(2π)3

∫
p(q, v̂, t)eiq·x d3q , (2.25)

and the Laplace transform defined as

p(x, v̂, s) =

∫ ∞
0

e−stp(x, v̂, t) dt . (2.26)

The functions in the real space and the Fourier/Laplace space are distinguished
by their arguments.

After Fourier transform to the spatial coordinates and Laplace transform to the
time, the master equation becomes

sp(q, v̂, s)− 1

Ω
= −Dq2p(q, v̂, s)− iv · qp(q, v̂, s)− λp(q, v̂, s) +

λ

Ω
ρM (q, s) .

(2.27)
where 1/Ω = p(q, v̂, t)|t=0 is the initial condition. The technique of solving
ρM (q, s) =

∫
p(q, v̂, s) dΩ′ is similar to K. Martens, 2012 [38]. Firstly we re-

arrange the terms into

p(q, v̂, s) =
λ

(s+Dq2 + iq · v + λ)Ω
ρM (q, s) +

1

(s+Dq2 + iq · v + λ)Ω
.

(2.28)
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Acting the operator
∫
dΩ on both side, and denoting

P =
1

Ω

∫
1

s+Dq2 + iq · v + λ
dΩ , (2.29)

we can solve ρM (q, s) as

ρM (q, s) =
P

1− λP
. (2.30)

Then in the three-dimensional space, we set the direction of q to be the z-axis
and the integration becomes

∫
dΩ =

∫
sin θ dθdφ, we can evaluate P to be

P =
1

2

∫ 1

−1

1

s+Dq2 + iqv cos θ + λ
d cos θ

=
i

2qv
ln

(
s+Dq2 + λ− iqv
s+Dq2 + λ+ iqv

)
=

arctan(qv/(s+Dq2 + λ))

qv
. (2.31)

So we have

ρM (q, s) =
arctan(qv/(s+Dq2 + λ))

qv − λ arctan(qv/(s+Dq2 + λ))
, (2.32)

which is independent of the direction of q. Hence we get the Fourier-Laplace
transformed solution of the particle density from the master equation, which is
of more interest than the full probability distribution.

In addition, the full (but less interesting) probability distribution is given by

p(q, v̂, s) =
1

(s+Dq2 + iq · v + λ)Ω
· 1

1− λP

=
1

4π(s+Dq2 + iq · v + λ)
· qv

qv − λ arctan(qv/(s+Dq2 + λ))
.

(2.33)

However, we cannot invert the Fourier-Laplace transformed solution analyti-
cally. If needed, we can implement the numerical inverse Laplace transform.
The numerical details can be found in Section B.3.

2.5 Properties of the solution

In this section I will present the properties of solution (2.32), to give some
insights of the run-and-tumble motion.
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2.5.1 Mean square displacement

How far from the origin the particles move after the time t can be characterized
by the its mean square displacement 〈∆x2(t)〉. As

〈∆x2(s)〉 = − ∂2ρM (q, s)

∂q2

∣∣∣∣
q=0

, (2.34)

we have

〈∆x2(s)〉 =
2D

s2
+

2v2

3s2(s+ λ)
(2.35)

and the inverse Laplace transform gives

〈∆x2(t)〉 = 2Dt+ 2

(
v2

3λ
t+

v2

3λ2
e−λt

)
− 2v2

3λ2
. (2.36)

If t � 1/λ, 〈∆x2(t)〉 ≈ v2t2/3 + 2Dt, apart from the Brownian diffusion term,
the particles show ballistic motion. If t� 1/λ, the exponential term will vanish
and the motion is diffusive as we expected. The diffusion coefficient is same
with in Section 2.2.

2.5.2 Small length scale limit and straight swimmers

If q is sufficient large such that Dq2 � λ and qv � 2πλ, which means we are
considering the system in the very short length scales, and the tumbles can be
neglected. The particles that cannot tumble are called ”straight swimmers”. In
this case, the solution reduces to

ρM (q, s) =
1

qv
arctan

qv

s+Dq2
, (2.37)

We can do the inverse Laplace transform to it to get

ρM (q, t) = e−Dq
2t sin(qvt)

qvt
. (2.38)

This is simply the solution of

∂p(q, v̂, τ)

∂τ
= −Dq2p(q, v̂, τ)− iv · qp(q, v̂, τ) . (2.39)

This result can also be obtained and understood in another way [33]. Apart from
the contribution from diffusion, the microscopic density of a single swimmer is
simply

ρ(x, t) = δ(x− vt) , (2.40)

ρ(q, t) = e−iq·vt . (2.41)
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Then we average on the direction of q in the three-dimensional space to give

ρ(q, t) =
1

4π

∫
e−iqvt cos θ sin θ dθdφ =

sin(vqt)

vqt
. (2.42)

Then we multiply e−Dq
2t which is the solution of the diffusion equation to get

the solution, as the Brownian diffusion merely introduces a Gaussian spreading
into the probability distribution.

2.5.3 Large length scale limit

Now we consider the system in the large length scales (q → 0). We first rewrite
(2.32) as

ρM (q, s) =
1

qv/ arctan(qv/(s+Dq2 + λ))− λ
(2.43)

and expand the term in the denominator with respect q, to get

qv

arctan(qv/(s+Dq2 + λ))
= s+ λ+

(
D +

v2

3(λ+ s)

)
q2 + o(q4) , (2.44)

and

ρM (q, s) =
1

s+ (D + v2/3(λ+ s)) q2 + o(q4)
. (2.45)

The inverse Laplace transformation can be carried out to get

ρM (q, t) =
(∆ + λ−Dq2)e−t(Dq

2+λ−∆)/2 + (∆− λ+Dq2)e−t(Dq
2+λ+∆)/2

2∆
.

(2.46)
with

∆ =

√
(λ−Dq2)2 − 4q2v2

3
. (2.47)

It is valid for the sufficient small q (in practice, q ∼ 0.01µm−1). As ∆ <
|λ−Dq2| < λ+Dq2, we got a composition of two exponential decays with the
different time scales. Considering ∆ = λ −Dq2 − 2v2q2/3λ + o(q4), the rapid

decay term is proportional to e−λt+v
2q2t/3λ. For q �

√
3λ/v, the rapid decay

term can be neglected for the long time scales. Thus we have the slow decay
term which dominates in the long time scales,

ρM (q, t) ∼ e−(D+v2/3λ)q2t , (2.48)

which is exactly the diffusive limit we have in Section 2.2, with the effective
diffusion coefficient

Deff = D +
v2

3λ
. (2.49)
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The same result can be obtained by comparing the expansion

ρM (q, t) =
1

s+ (D + v2/3λ)q2 + o(sq2)
(2.50)

and the Laplace-Fourier transformed solution for the diffusion equation ∂ρ(x,t)
∂t =

Deff∇2ρ(x, t)

ρ(q, t) =
1

s+Deffq2
. (2.51)

Again we can be convinced that the run-and-tumble particles behave like the
Brownian particles in the large temporal-spacial scales.

2.5.4 Sensitivity to parameters

As we will see in Chapter 6, we can compare the solution (2.32) with the exper-
imental data to measure the parameters in the run-and-tumble motion. Thus a
sensitivity analysis may be helpful to find a proper q range for measuring differ-
ent parameters. We need (2.32) to be sensitive to the parameters in the q range
that can be reached in the experiments, so that we can fit the experimental data
efficiently.

To do the local sensitivity analysis, we follow the method developed by K.S.
Brown, et al [39, 40, 41, 42]. Generally, for an arbitrary function of time f(t;p),
where p is the vector of the parameters, we define the cost function

C(p) =

∫ ∞
0

[f(τ ;p)− f(τ ;p0)]2dτ (2.52)

to study the sensitivity around the specific parameters p0. The idea is that the
slow changing direction of C(p) in the parameter space means the function is
insensitive to the parameters change in that direction. So we expand C(p) in
the vicinity of p0, noticing C(p0) = 0 and ∂C/∂p|p=p0 = 0, to get a quadratic
form

C(p0 + ∆p) =
1

2

∑
i,j

∂2C

∂pi∂pj

∣∣∣∣
pi=pi0,pj=pj0

∆pi∆pj + o(∆p3) (2.53)

with the matrix

Hij =
∂2C

∂pi∂pj

∣∣∣∣
pi=pi0,pj=pj0

. (2.54)

If an orthogonal matrix V bring H into a diagonal matrix through congruent
transformation, defining η = V p, and the cost function can be written as

C(p0 + ∆p) =
1

2

∑
i

(V HV T )ii∆η
2
i =

1

2

∑
i

ξi∆η
2
i , (2.55)
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so the eigenvalue ξi of H will determine how sensitive the function is to the
change in the direction of η̂i, and the eigenvector corresponding to the least
eigenvalue will determine the most insensitive direction in the parameter space.

As all the parameters pi are non-negative and have the different order of mag-
nitude, we may replace ∆pi by pi0∆pi and rescale the matrix into

Hij = pi0pj0
∂2C

∂pi∂pj

∣∣∣∣
pi=pi0,pj=pj0

(2.56)

in the following discussion.

For many models we are interested in, an explicit expression of time t doesn’t
exist, but a Laplace transformed function of s exists. By direct substitution and
noticing

[f(τ ;p)− f(τ ;p0)]
∂2f(τ ;p)

∂pi∂pj

∣∣∣∣
pi=pi0,pj=pj0

= 0 , (2.57)

we have

Hij = pi0pj0

∫ ∞
0

∂f(τ ;p)

∂pi

∣∣∣∣
pi=pi0

∂f(τ ;p)

∂pj

∣∣∣∣
pj=pj0

dτ

=pi0pj0L

{
∂f(τ ;p)

∂pi

∣∣∣∣
pi=pi0

∂f(τ ;p)

∂pj

∣∣∣∣
pj=pj0

}
(s = 0)

=
pi0pj0
2πi

∫ i∞

−i∞

∂F (s;p)

∂pi

∣∣∣∣
pi=pi0

∂F (−s;p)

∂pj

∣∣∣∣
pj=pj0

ds

=
pi0pj0

2π

∫ ∞
−∞

∂F (ix;p)

∂pi

∣∣∣∣
pi=pi0

∂F (−ix;p)

∂pj

∣∣∣∣
pj=pj0

dx .

(2.58)

In the last two equations, F (s;p) is the Laplace transformed function of f(t;p).
We made use of the multiplication formula of Laplace transform. Assuming all
the singularities are left of the imaginary axis (which is true for the functions
we are interested in), we take the integration counter along the imaginary axis.

For the model (2.1), we have a solution of the Laplace transformed macroscopic
density ρM as

ρM (q, s;p) =
arctan(qv/(s+Dq2 + λ))

qv − λ arctan(qv/(s+Dq2 + λ))
. (2.59)

But it’s difficult to calculate Hij explicitly. So I used a short Mathematica
program to numerically evaluate Hij . I investigated the Hij for the parameters
v = 13µm/s, λ = 1s−1, D = 0.4µm2/s which were similar with the real values
in experiments. The results are listed in Table 2.1, 2.2, 2.3, 2.4.
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Eigenvector Eigenvalue

v̂ λ̂ D̂

-0.9964 0.0841 -0.0087 3.73×10−1

-0.0823 -0.9882 -0.1293 2.43×10−3

-0.0195 -0.1281 0.9916 2.26×10−5

Table 2.1: The eigenvalues and corresponding eigenvectors of Hij for q =

0.5µm−1. The least sensitive direction is almost along with D̂. Here the hat
denotes the unit vector.

Eigenvector Eigenvalue

v̂ λ̂ D̂

-0.9992 0.0373 -0.0133 2.25×10−1

-0.0271 -0.8887 -0.4577 6.64×10−4

-0.0289 -0.4569 0.8890 4.96×10−5

Table 2.2: The eigenvalues and corresponding eigenvectors of Hij for q =

1.0µm−1. The least sensitive direction is almost in the plane of λ̂ and D̂.

Eigenvector Eigenvalue

v̂ λ̂ D̂

-0.9995 0.0238 -0.0185 1.50×10−1

-0.0007 0.5958 0.8031 4.11×10−4

-0.0301 -0.8028 0.5955 3.91×10−5

Table 2.3: The eigenvalues and corresponding eigenvectors of Hij for q =

1.5µm−1. The least sensitive direction is almost in the plane of λ̂ and D̂.

Eigenvector Eigenvalue

v̂ λ̂ D̂

-0.9995 0.0177 -0.0249 1.04×10−1

0.0171 -0.3518 -0.9359 3.93×10−4

-0.0253 -0.9359 0.3514 1.96×10−5

Table 2.4: The eigenvalues and corresponding eigenvectors of Hij for q =

2.0µm−1. The least sensitive direction is almost along λ̂.
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Comparing the results in Table 2.1, 2.2, 2.3, and 2.4, we found that the speed v
is the most sensitive one among the three parameters in a large q range, which
means we are able to measure it in the experiments with high accuracy.

Diffusion coefficient D is sensitive only for the high q. As indicated in Section
2.2, in the large spatial scales (small q), the Brownian diffusion will be mixed
with the diffusive effect of the run-and-tumble motion, and distinguish them
would be hard. Thus we need data in q >∼ 1.0µm−1 to measure D in the
experiments.

Tumbling rate λ is sensitive only for the small q. In the small spatial scales
(large q), tumbling events would be rare and the particles would exhibit ballistic
motion, as indicated in Section 2.5.2. So data in q <∼ 1.0µm−1 are needed to
measure λ efficiently in the experiments. We will make use of this result in
Chapter 7.



Chapter 3

More detailed models

The simple model in Chapter 2 has captured the most important features of
many realistic run-and-tumble particles. But we should mention we have ne-
glected several ”ingredients” in this model, which may have an observable effect.
For example, the bacteria needs some time during tumbling [24], and the direc-
tion change after tumbling may not be isotropic [25]. Now we are at the stage
to add more ingredients to the simplest model, and see how these ingredients
affect the motion of the run-and-tumble particles.

3.1 Finite tumbling duration

The model in Chapter 2 corresponds to the instantaneous tumbling, but it
cannot be true in the experiments. To implement a finite tumbling duration in
the simplest model, we separate the population into the running cells and the
tumbling cells, described by pr(q, v̂, t) and pt(q, t) correspondingly. Then the
total macroscopic density should be

ρM (q, t) =

∫
pr(q, v̂, t) dΩ + pt(q, t) . (3.1)

As for the model (2.1), the swimming particles have the probability λ dt to
tumble in the time interval dt. But instead of a fixed time delay, we assume
the tumbling cells has probability dt/δ to recover in time interval dt, where δ
has the dimension of a time and can be regarded as a characteristic tumbling

21
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duration (or a mean tumbling duration). Then the master equations read

∂pr(x, v̂, t)

∂t
= ∇ · [D∇pr(x, v̂, t)]−∇ · [vpr(x, v̂, t)]− λpr(x, v̂, t) +

1

δΩ
pt(x, t) ,

(3.2)

∂pt(x, t)

∂t
= ∇ · [D∇pt(x, t)] + λ

∫
pr(x, v̂

′, t) dΩ′ − 1

δ
pt(x, t) . (3.3)

3.1.1 Moment expansion and diffusive limit

Again, we first investigate the diffusive limit of (3.2) and (3.3) to get an effective
equation for the density field ρM , with the procedure described in Section 2.2.
The moment expansion of (3.2) can be written as

pr =
ρr
Ω

+ Jiv̂i +Qij

(
v̂iv̂j −

δij
d

)
+ Θ[pr] . (3.4)

And as in Section 2.2, we can get the equations for the first three moments. For
the first three terms in the expansion (3.4), we have

∂ρr
∂t

=− Ω

d
∇i (vJi) +∇i(D∇iρr)− λρr +

1

δ
pt , (3.5)

∂Ji
∂t

=− 1

Ω
∇i(vρr)−

2

d+ 2
∇j (vQij) +∇j (D∇jJi)− λJi , (3.6)

∂Qij
∂t

=− d+ 2

2
Bijkl∇k (vJl) +∇k (D∇kQij)− λQij −∇k (vχijk) , (3.7)

where

Bijkl =
1

d+ 2

(
δikδjl + δilδjk −

2

d
δijδkl

)
, (3.8)

χijk =

∫
Mij v̂kΘ[pr] dΩ . (3.9)

Assuming the time derivatives of the l ≥ 1 moments and the ∇3 terms to be
vanished, we have

Ji = − 1

Ωλ
∇ (vρr) , (3.10)

and
∂ρM
∂t

= ∇ · (D∇ρM ) +∇
[ v
dλ
∇ (vρr)

]
. (3.11)

To have more information about ρr, we need one more assumption that the
fixed ratio of the density is reached everywhere between the running particles
and the tumbling particles. The fixed ratio means

∂

∂t

ρr(x, t)

pt(x, t)
= 0 . (3.12)
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Making use of (3.2) and (3.3), noticing ρr(x, t) ∝ pt(x, t), and assuming the
isotropic probability distribution, we have

(pt(x, t) + ρr(x, t))

(
pt(x, t)

δ
− λρr(x, t)

)
= 0 ,

pt(x, t) = δλρr(x, t) ,

ρr(x, t) =
1

1 + δλ
(pt + ρr) =

1

1 + δλ
ρM (x, t) . (3.13)

With this approximation, we have

∂ρM
∂t

= ∇ · (D∇ρM ) +∇
[
v

dλ
∇
(

v

1 + λδ
ρM

)]
. (3.14)

If all the parameters are independent of the spatial coordinates, we find the
effective diffusion coefficient of the run-and-tumble particles in the d-dimensional
space

Deff = D +
v2

dλ(1 + λδ)
. (3.15)

Comparing with the continuity equation

∂ρM
∂t

= −∇ · J , (3.16)

we have the flux of particles to be

J = −D∇ρM −
v

dλ
∇
(

v

1 + δλ
ρM

)
. (3.17)

And if δ or λ depend on some external chemical, we can also have a chemotaxis
flux. So regulating speed is not the only way to have chemotaxis phenomenon.
As for the bacteria, the chemotaxis system seems to be regulating the tumbling
rate λ and the tumbling duration δ instead of the speed v, but we need more
experimental data to confirm this.

The same result can be obtained by rescaling time. The finite tumbling duration
delays the fraction of the running time from 1 to 1/(1 + λδ). If we rescale both
v and λ by a factor of 1/(1 +λδ), we can have the same result. Hence the finite
tumbling duration only results in a rescaling in isotropic tumbling in the large
spatial scale.
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3.1.2 Solution in three-dimensional free space

To get a similar solution as in Section 2.4, we assume the constant parameters
and do Fourier-Laplace transform to get

spr(q, v̂, s)− pr0 =−Dq2pr(q, v̂, s)− iv · qpr(q, v̂, s)

− λpr(q, v̂, s) +
1

δΩ
pt(q, s) , (3.18)

spt(q, s)− pt0 =−Dq2pt(q, s) + λ

∫
pr(q, v̂

′, s) dΩ′ − 1

δ
pt(q, s) . (3.19)

Here pr0 and pt0 are the initial conditions which should satisfy

pt0 +

∫
pr0 dΩ′ = pt0 + Ωpr0 = 1 . (3.20)

The first equation is from the assumption that the initial probability distribu-
tion is isotropic. In general we have no further information about the initial
conditions pr0 and pt0, the solution will depend on the initial ratio of the swim-
ming particles to the tumbling particles. But in practice, many measurements
are often taken a few minutes after the preparation of the sample. The sample
should have adequate time to reach an invariant ratio of the swimming cells to
the tumbling cells.1 By setting

∂

∂t

∫
dV
∫
pr(x, v̂, t) dΩ∫
pt(x, t)dV

=
∂

∂t

∫
pr(q = 0, v̂, t) dΩ

pt(q = 0, t)
= 0 (3.21)

and making use of (3.2) and (3.3) after Fourier transform, we have(
pt(0, t) +

∫
pr(0, v̂, t) dΩ

)(
pt(0, t)

δ
− λ

∫
pr(0, v̂, t) dΩ

)
= 0 , (3.22)

pt(0, t) = δλ

∫
pr(0, v̂, t) dΩ . (3.23)

As pr,t(x, t = 0) ∝ δ(x), pr,t(q, 0) = pr,t(q = 0, 0), we can solve (3.20) to get

pr0 =
1

Ω(δλ+ 1)
, pt0 =

δλ

δλ+ 1
. (3.24)

Now equation (3.19) gives

pt(q, s) =
δλ

δ(s+Dq2) + 1

(∫
pr(q, v̂

′, s) dΩ′ +
δ

δλ+ 1

)
. (3.25)

1This assumption is much weaker than (3.12). Here we only assume a fixed ratio of the
total number in the initial condition, not a fixed ratio of the density everywhere and for any
time.
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Substituting it into (3.18), we have

pr(q, v̂, s) =
1

Ω(s+Dq2 + iv · q + λ)

(
δ(s+ λ+Dq2) + 1

(δλ+ 1)(δ(s+Dq2) + 1)

+
λ

δ(s+Dq2) + 1

∫
pr(q, v̂

′, s) dΩ′
)
. (3.26)

Denoting ρr(q, s) =
∫
pr(q, v̂, s) dΩ , with the same trick with which we get

(2.32), we have in three dimensions

ρr(q, s) =
arctan(qv/(s+ λ+Dq2))

qv

[
δ(s+ λ+Dq2) + 1

(δλ+ 1)(δ(s+Dq2) + 1)

+
λ

δ(s+Dq2) + 1
ρr(q, s)

]
, (3.27)

ρr(q, s) =
δ(s+ λ+Dq2) + 1

δλ+ 1

arctan(qv/(s+ λ+Dq2))

qv(δ(s+Dq2) + 1)− λ arctan(qv/(s+ λ+Dq2)
.

(3.28)

Then we have

ρM (q, s) =ρr(q, s) + pt(q, s)

=
δ(s+ λ+Dq2) + 1

δ(s+Dq2) + 1
ρr(q, s) +

δ2λ

(δ(s+Dq2) + 1)(δλ+ 1)

=
qvδ2λ+ [1 + δ(Dq2 + 2λ+ s)] arctan(qv/(Dq2 + λ+ s))

(1 + δλ)[qv(1 + δDq2 + δs)− λ arctan(qv/(Dq2 + λ+ s))]
. (3.29)

Again, ρM (q, s) is independent of the direction of q. And by the limitation
δ → 0, we can recover (2.32).

The mean square displacement of the particles satisfies

〈∆x2(s)〉 = − ∂2ρM (q, s)

∂q2

∣∣∣∣
q=0

, (3.30)

we have

〈∆x2(s)〉 =
2D

s2
+

2v2

3s2(1 + λδ)(s+ λ)
(3.31)

and the inverse Laplace transform gives

〈∆x2(t)〉 = 2Dt+
2

1 + λδ

(
v2

3λ
t+

v2

3λ2
e−λt

)
− 2v2

3λ2(1 + λδ)
. (3.32)

Comparing with the result of the particles with instantaneous tumbling (2.36),
the finite tumbling duration just introduces a factor of 1/(1 + λδ) into the run-
and-tumble terms. The ballistic motion in the small time scales is also affected,
and exhibits an effective speed of v/

√
1 + λδ.
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For the large spatial scales, we can expand 1/ρM in terms of q to have

ρM (q, s) =
1

s+ [D + v2/3(1 + λδ)(λ+ s)] q2 + o(q4)
. (3.33)

The inverse Laplace transform can be carried out to get

ρM (q, t) =
(∆ + λ−Dq2)e−t(Dq

2+λ−∆)/2 + (∆− λ+Dq2)e−t(Dq
2+λ+∆)/2

2∆
.

(3.34)
with

∆ =

√
(λ−Dq2)2 − 4q2v2

3(1 + λδ)
. (3.35)

Similar with the model with δ → 0, it’s also a composition with two exponential
decays, and the slow mode shows an effective Brownian diffusion.

By expanding 1/ρM in terms of q and s, we can also get

1

ρM
= s+

(
D +

v2

λd(1 + δλ)

)
q2 + o(sq2) , (3.36)

and find an effective diffusion coefficient same with (3.15).

3.1.3 Sensitivity analysis

In Chapter 6, we will fit (3.29) with the experimental data to measure the
parameters. Since we have introduced a new parameter, the new parameter may
change the q range we need to find the old parameters. We also need to know
the proper q range for measuring tumbling duration. Hence I investigated the
sensitivity of (3.29) to all the parameters. Same with Section 2.5.4, I investigated
the Hij for the parameters v = 13µm/s, λ = 1s−1, D = 0.4µm2/s, δ = 0.14s
which is similar with the real values in experiments. The results are listed in
Table 3.1, 3.2, 3.3, and 3.4.

Comparing the results in Table 3.1, 3.2, 3.3, and 3.4, we found that the con-
clusion in Section 2.5.4 still holds: v is still the most sensitive parameter and
should be easily measured. We can find D in the high q range and λ in the
low q range in the experimental data. In addition, we found the sensitivity of
the tumbling duration δ is complicated. There is a relative sensitive eigenvector
having an angle with the direction of δ̂. Together with the fitting results of the
simulation data in Section 7.7, we found the fitting of δ depends little on q.



3.1. FINITE TUMBLING DURATION 27

Eigenvector Eigenvalue

v̂ λ̂ D̂ δ̂

-0.9867 0.1496 -0.0116 0.0628 3.16×10−1

-0.1611 -0.8853 -0.0568 -0.4325 4.96×10−3

-0.0015 -0.3945 -0.3420 0.8529 1.60×10−4

0.0226 0.1956 -0.9379 -0.2856 1.47×10−5

Table 3.1: The eigenvalues and corresponding eigenvectors of Hij for q =

0.5µm−1. The least sensitive direction is almost along with D̂. Here the hat
denotes the unit vector.

Eigenvector Eigenvalue

v̂ λ̂ D̂ δ̂

-0.9951 0.0867 -0.0184 0.0440 1.73×10−1

-0.0937 -0.7812 -0.0774 -0.6123 2.67×10−3

0.0011 -0.4468 -0.6168 0.6480 2.32×10−4

0.0317 0.4272 -0.7831 -0.4509 4.03×10−5

Table 3.2: The eigenvalues and corresponding eigenvectors of Hij for q =

1.0µm−1. The least sensitive direction is the subspace of D̂, λ̂, and δ̂.

Eigenvector Eigenvalue

v̂ λ̂ D̂ δ̂

-0.9969 0.0653 -0.0252 0.0369 1.15×10−1

-0.0707 -0.7211 -0.0757 -0.6850 1.73×10−3

0.01635 -0.3181 -0.8464 0.4268 2.62×10−4

-0.0316 -0.6120 0.5265 0.5893 4.33×10−5

Table 3.3: The eigenvalues and corresponding eigenvectors of Hij for q =

1.5µm−1. The least sensitive direction is the subspace of D̂, λ̂, and δ̂.
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Eigenvector Eigenvalue

v̂ λ̂ D̂ δ̂

-0.9972 0.0567 -0.0333 0.0355 8.08×10−2

0.0627 0.6859 0.0593 0.7225 1.22×10−3

0.0292 -0.2084 -0.9389 0.2723 2.98×10−4

-0.0282 -0.6949 0.3374 0.6344 3.22×10−5

Table 3.4: The s and corresponding eigenvectors of Hij for q = 2.0µm−1. The

least sensitive direction is the subspace of D̂, λ̂, and δ̂.

3.2 Tumble by active rotational diffusion

Now we take into account the anisotropic tumbles. Instead of inserting a phe-
nomenological kernel T (v̂, v̂′) in the integration term λ

Ω

∫
p(x, v̂′, t) dΩ′ in the

simple model (2.1), we can consider a more detailed model that assumes the
tumbles to be active rotational diffusion, which is a result of the unbalanced
global torque from the repelling force of the unbundled flagella, as shown in
Figure 1.1. Due to the rod shape of the particles, there may also be a pas-
sive rotational diffusion effect that causing the drift of the direction during cell
running. The active and the passive rotational diffusion coefficients may be
different.

With both effects taken into account, and the similar notations with Section
3.1, we have the master equation for the running particles pr(x, v̂, t) and the
tumbling particles pt(x, v̂, t)

∂pr
∂t

= ∇(D∇pr) +Dr∆v̂pr −∇ · (vpr)− λpr +
1

δ
pt , (3.37)

∂pt
∂t

= ∇(D∇pt) +Dra∆v̂pt + λpr −
1

δ
pt . (3.38)

Here Dr and Dra are the two rotational diffusion coefficients (subscript a stands
for active), and ∆v̂ is the Laplace-Beltrami operator on the d − 1 dimensional

unit sphere. In three dimensions, ∆v̂ = −L̂2 where

L̂2 = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2
(3.39)

is the well-known total angular momentum operator acting on v̂.
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3.2.1 Moment expansion and diffusive limit

To get an effective equation for the density field ρM , with the procedure de-
scribed in Section 2.2, we expand the angular dependence of pr and pt with
respect to v̂ as

pr,t =
ρr,t
Ω

+ J
(r,t)
i v̂i +Q

(r,t)
ij

(
v̂iv̂j −

δij
d

)
+ Θ[pr,t] . (3.40)

For the first three terms in the expansion (3.40), we have

∂ρr
∂t

=− Ω

d
∇i
(
vJ

(r)
i

)
+∇i(D∇iρr)− λρr +

1

δ
ρt , (3.41)

∂ρt
∂t

=∇i(D∇iρt) + λρr −
1

δ
ρt , (3.42)

∂J
(r)
i

∂t
=− 1

Ω
∇i(vρr)−

2

d+ 2
∇j
(
vQ

(r)
ij

)
+∇j

(
D∇jJ (r)

i

)
− (d− 1)DrJ

(r)
i − λJ (r)

i +
1

δ
J

(t)
i , (3.43)

∂J
(t)
i

∂t
=∇j

(
D∇jJ (t)

i

)
− (d− 1)DraJ

(t)
i + λJ

(r)
i − 1

δ
J

(t)
i , (3.44)

∂Q
(r)
ij

∂t
=− d+ 2

2
Bijkl∇k

(
vJ

(r)
l

)
+∇k

(
D∇kQ(r)

ij

)
− 2dDrQ

(r)
ij

− λQ(r)
ij +

1

δ
Q

(t)
ij −∇k

(
vχ

(r)
ijk

)
, (3.45)

∂Q
(t)
ij

∂t
=∇k

(
D∇kQ(t)

ij

)
− 2dDraQ

(t)
ij + λQ

(r)
ij −

1

δ
Q

(t)
ij , (3.46)

where

Bijkl =
1

d+ 2

(
δikδjl + δilδjk −

2

d
δijδkl

)
, (3.47)

χ
(r)
ijk =

∫
Mij v̂kΘ[pr] dΩ . (3.48)

Assuming the time derivatives of the l ≥ 1 moments and the ∇3 terms to be
vanished, we have

J
(r)
i =− 1 + (d− 1)Draδ

Ω(d− 1)[Dr +Draλδ + (d− 1)DrDraδ]
∇ (vρr) , (3.49)

J
(t)
i =− λδ

Ω(d− 1)[Dr +Draλδ + (d− 1)DrDraδ]
∇ (vρr) . (3.50)



30 CHAPTER 3. MORE DETAILED MODELS

Noticing ρM = ρr + ρt, we have the diffusion equation

∂ρM
∂t

= ∇ · (D∇ρ) +
1

d(d− 1)
∇
[

v(1 + (d− 1)Draδ)

Dr +Draλδ + (d− 1)DrDraδ
∇ (vρr)

]
.

(3.51)
With the same approximation with Section 3.1.1, we have

ρr =
1

1 + λδ
ρM (3.52)

and

∂ρM
∂t

= ∇·(D∇ρ)+
1

d(d− 1)
∇
[

v(1 + (d− 1)Draδ)

Dr +Draλδ + (d− 1)DrDraδ
∇
(

v

1 + λδ
ρM

)]
.

(3.53)
The effective diffusion coefficient is

Deff = D +
v2[1 + (d− 1)Draδ]

d(d− 1)(1 + λδ)[Dr +Draλδ + (d− 1)DrDraδ]
. (3.54)

If the rotational diffusion during running can be neglected, by taking Dr = 0
we have

Deff = D +
v2[1 + (d− 1)Draδ]

d(d− 1)(1 + λδ)Draλδ
, (3.55)

which looks like a rescaling of v and λ by two factors: 1/(1 + λδ) and [1 + (d−
1)Draδ]/(d − 1)Draδ in (2.19). As a small Dra makes particles persist on its
original direction, it will enhance the diffusivity of the particles.

For the particles that have isotropic tumbling, we have Dra →∞ and

Deff = D +
v2

d(1 + λδ)[λ+ (d− 1)Dr]
, (3.56)

which is already known for the active Brownian particles [35, 36]. We notice
except for the factor 1/(1 + λδ), the effect of the passive rotational diffusion
resembles an effective tumbling rate λ′ = (d− 1)Dr.

If the particles don’t have randomization in direction during tumbling, Dra = 0
and

Deff = D +
v2

d(d− 1)(1 + λδ)Dr
, (3.57)

which is the diffusivity of the active Brownian particles without tumbling, but
with a rescaling in the time due to the duration δ for the particles to stop
running.

If the particles don’t have active rotational diffusion mechanism, but randomize
their direction with the passive rotational diffusion. Then the particles just stop
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running with the rate λ. Taking Dra = Dr we have

Deff = D +
v2[1 + (d− 1)Drδ]

d(d− 1)Dr(1 + λδ)[1 + λδ + (d− 1)Drδ]
. (3.58)

As we can see introducing anisotropic tumbling complicates the diffusion coeffi-
cient of the run-and-tumble particles. The effects of the active and the passive
rotational diffusion can mix up in a non-trivial form.

3.2.2 Formal solution

The direct solutions of (3.37) and (3.38) are very difficult to get. We can obtain
a formal solution using the following procedure in three dimensions (d = 3).
After the Fourier-Laplace transform, we expand the pr,t(q, v̂, s) in terms of the
spherical harmonics

pr,t(q, v̂, s) =

∞∑
l=0

l∑
m=−l

b
(r,t)
lm (q, s)Ylm(θ, φ) , (3.59)

where

Ylm(θ, φ) = (−1)m

√
(2l + 1)(l −m)!

4π(l +m)!
Pml (cos θ)eimφ (3.60)

are the spherical harmonics, and

Pml (x) = (−1)l+m
(l +m)!

(l −m)!

1

2ll!(1− x2)m/2
dl−m

dxl−m
[(1− x2)l] (3.61)

are the associated Legendre polynomials. Noticing that

Ylm(θ, φ) cos θ =

√
(l −m+ 1)(l +m+ 1)

(2l + 1)(2l + 3)
Yl+1,m(θ, φ)

+

√
(l −m)(l +m)

(2l + 1)(2l − 1)
Yl−1,m(θ, φ) , (3.62)

we can define the raising and the lowering operators â+ and â− as

â+blm(q, s) =

√
(l −m+ 1)(l +m+ 1)

(2l + 1)(2l + 3)
bl+1,m(q, s) , (3.63)

â−blm(q, s) =

√
(l −m)(l +m)

(2l + 1)(2l − 1)
bl−1,m(q, s) . (3.64)
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As the spherical harmonics are the eigenvectors of the total angular momentum
operator,

L̂2Ylm(θ, φ) = l(l + 1)Ylm(θ, φ) , (3.65)

(3.37) and (3.38) become

sb
(r)
lm − b

(r)
lm,0 = −Dq2b

(r)
lm −Drl(l + 1)b

(r)
lm − iqv(â+ + â−)b

(r)
lm − λb

(r)
lm + δ−1b

(t)
lm ,

(3.66)

sb
(t)
lm − b

(t)
lm,0 = −Dq2b

(t)
lm −Dral(l + 1)b

(t)
lm + λb

(r)
lm − δ

−1b
(t)
lm . (3.67)

Here b
(r,l)
lm,0 is the initial condition of b

(r,l)
lm (q, t) before Laplace transform. If we

take the initial condition to be the Dirac delta function in space, then b
(r,l)
lm,0 = 0

for l 6= 0, but is constant for l = 0. Defining operators ψ̂ and ψ̂′ as

ψ̂ =
1

s+Dq2 +Drl(l + 1) + iqv(â+ + â−) + λ
, (3.68)

ψ̂′ =
1

s+Dq2 +Dral(l + 1) + δ−1
, (3.69)

the linear equations can be formally solved as

b
(r)
lm =

(
1− λ

δ
ψ̂ψ̂′

)−1

(ψ̂b
(r)
lm,0 + δ−1ψ̂ψ̂′b

(t)
lm,0) , (3.70)

b
(t)
lm =

(
1− λ

δ
ψ̂′ψ̂

)−1

(ψ̂′b
(t)
lm,0 + λψ̂′ψ̂b

(r)
lm,0) . (3.71)

Using the identity

Â(1− cB̂Â)−1 = (1− cÂB̂)−1Â , (3.72)

we have

blm = b
(r)
lm + b

(t)
lm

= (1 + λψ̂′)

(
1− λ

δ
ψ̂ψ̂′

)−1

ψ̂b
(r)
lm,0 +

(
1 +

ψ̂

δ

)(
1− λ

δ
ψ̂′ψ̂

)−1

ψ̂′b
(t)
lm,0 .

(3.73)

However, the evaluation of this expression need to solve infinity dimensional
linear equations. We may seek an approximation by a suitable truncation,
which is left for future work.

The same formal solution can also be constructed in another way, following the
method developed by F. Detcheverry [43]. Using the joint probability distri-
butions of the state jump Jr→t(x, v̂, t) and Jt→r(x, v̂, t), we can construct the
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solution in real time and space

pr =

∫ t

0

dt′ ψ(t− t′)
∫

sin θ′ dθ′dφ′d3x grs(x− x′, v̂ − v̂′, t− t′)Jt→r(x′, v̂′, t′)

+ ψα(t)

∫
sin θ′ dθ′dφ′d3x grs(x− x′, v̂ − v̂′, t)pr0(x′, v̂′) , (3.74)

pt =

∫ t

0

dt′ ψ′(t− t′)
∫

sin θ′ dθ′dφ′d3x grd(x− x′, v̂ − v̂′, t− t′)Jr→t(x′, v̂′, t′)

+ ψ′α(t)

∫
sin θ′ dθ′dφ′d3x grd(x− x′, v̂ − v̂′, t)pt0(x′, v̂′) , (3.75)

Jr→t =

∫ t

0

dt′ ψβ(t− t′)
∫

sin θ′ dθ′dφ′d3x grs(x− x′, v̂ − v̂′, t− t′)Jt→r(x′, v̂′, t′)

+ ψγ(t)

∫
sin θ′ dθ′dφ′d3x grs(x− x′, v̂ − v̂′, t)pr0(x′, v̂′) , (3.76)

Jt→r =

∫ t

0

dt′ ψ′β(t− t′)
∫

sin θ′ dθ′dφ′d3x grd(x− x′, v̂ − v̂′, t− t′)Jr→t(x′, v̂′, t′)

+ ψ′γ(t)

∫
sin θ′ dθ′dφ′d3x grd(x− x′, v̂ − v̂′, t)pt0(x′, v̂′) , (3.77)

where grs and grt are the propagators corresponding to the differential equations

∂grs
∂t

= D∇2grs −DrL̂2grs − v · ∇grs , (3.78)

∂grd
∂t

= D∇2grd −DraL̂2grd , (3.79)

with the initial condition grs(x, v̂ − v̂′, 0) = grd(x, v̂ − v̂′, 0) = δ(x)δ(v̂ − v̂′).
And

ψ(t) = e−λt , ψ′(t) = e−t/δ (3.80)

are the probabilities for the cell in each state (running and tumbling correspond-
ingly) that nothing happens in the time t after the last state jump. We also
define

ψα(t) = e−λt , ψ′α(t) = e−t/δ , (3.81)

the probabilities for the cell in each state (running and tumbling correspond-
ingly) that nothing happens in the time t after the initial time.

ψβ(t) = λe−λt , ψ′β(t) =
1

δ
e−t/δ (3.82)

are the probabilities for a state jump (r → t and t→ r correspondingly) happens
at the time t after the last state jump.

ψγ(t) = λe−λt , ψ′γ(t) =
1

δ
e−t/δ (3.83)
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are the probabilities for a state jump (r → t and t→ r correspondingly) happens
at the time t after the initial time.

To make the expression looks easier, we first notice that we can formally write
the solution of the equation

∂f

∂t
= L̂f (3.84)

with the initial condition f(x, v̂, t = t0) as

e(t−t′)L̂f =

∫
sin θ′ dθ′dφ′d3x′ g(x− x′, v̂ − v̂′, t− t0)f(x′, v̂′, t0) . (3.85)

Inserting into the constructed solution and Laplace transforming, noticing e(t−t′)L̂

just causes a shift in the Laplace transformed time s, we have

pr = ψ(s− L̂rs)Jt→r + ψα(s− L̂rs)pr0 , (3.86)

pt = ψ′(s− L̂rd)Jr→t + ψ′α(s− L̂rd)pt0 , (3.87)

Jr→t = ψβ(s− L̂rs)Jt→r + ψγ(s− L̂rs)pr0 , (3.88)

Jt→r = ψ′β(s− L̂rd)Jr→t + ψ′γ(s− L̂rd)pt0 . (3.89)

Here the operators L̂ are the corresponding differential operators in the right
hand side of the equations (3.79) and (3.78). Noticing ψβ = ψγ = λψα = λψ,

ψ′β = ψ′γ = δ−1ψ′α = δ−1ψ′, we denote the operator ψ̂ = ψ(s − L̂rs), ψ̂′ =

ψ′(s− L̂rd), and solve the equations formally as

Jr→t =

(
1− λ

δ
ψ̂ψ̂′

)−1(
λ

δ
ψ̂ψ̂′pt0 + λψ̂pr0

)
, (3.90)

Jt→r =

(
1− λ

δ
ψ̂′ψ̂

)−1(
λ

δ
ψ̂′ψ̂pr0 +

1

δ
ψ̂pt0

)
, (3.91)

pr =

(
1− λ

δ
ψ̂ψ̂′

)−1

(ψ̂pr0 + δ−1ψ̂ψ̂′pt0) , (3.92)

pt =

(
1− λ

δ
ψ̂′ψ̂

)−1

(ψ̂′pt0 + λψ̂′ψ̂pr0) . (3.93)

The later two equations, when expressed in the Fourier space and expand in the
spherical harmonics series, is the same with (3.70) and (3.71).



Chapter 4

Run-and-tumble motion
with obstacles

Now we consider a simple but common case of the interaction between particles
and environment: the particles may be blocked by the obstacles when swimming.
In practice, bacteria moving in semi-solid agar gel can be approximated as this
model. The proteins in the semi-solid agar form poriferous network of fibres
[44], and the cells moving in it may be trapped by the fibres.

This bloking interaction has effects in the experimental observation. Researchers
found that the cell migration rate is increasing with higher tumbling rate [45],
and the experiments in our lab showed a bell-shape curve of the diffusion coeffi-
cient to the tumbling rate [22], which contradicts with the well-known effective
diffusion coefficients (3.15) for the run-and-tumble motion in liquid. It indicates
the significant difference between the motion in gel and the motion in liquid,
which deserves careful investigation.

4.1 Run-and-tumble particles on lattice

We can approach this problem using a lattice model. The calculation of diffusion
coefficient reduces to calculate the mean square displacement 〈∆x2〉 ∼ 2Dt.
Considering non-interacting run-and-tumble particles moving on lattice, they
can hop into the neighbour sites with the hopping rate h, and change their
heading with the tumbling rate λ. The definition of tumbling rate is the same
as before, but the hopping rate is related with the swimming speed v by v = hδl,
where δl is the lattice spacing. Firstly, we need to know in what condition the
on-lattice model resembles off-lattice model. Hence we need to investigate the

35
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model without obstacles.

Denoting the position of a lattice site to be the vector x in the d-dimensional
lattice, we consider the probability distribution P (x, ei, t) of finding a particle
at the site x heading to the direction ei at the time t. Assuming the particle is
at the origin with a random heading direction at time t = 0, the initial condition
is P (x, ei, 0) = δx,0/2d. The master equation can be written as

∂P (x, ei, t)

∂t
=hP (x− ei, ei, t)− hP (x, ei, t)

− λP (x, ei, t) +
λ

2d

∑
i

P (x, ei, t) . (4.1)

Direction ei, where i = ±1,±2, · · · ,±d, is a vector that the only non-zero
component is the |i|-th component, which is ±1 with the sign same as the sign
of i.

To calculate 〈∆x2〉, without loss of generality, we introduced the one-variable
generating function

Fi(z, t) =

∞∑
x=−∞

zx1P (x, ei, t) , (4.2)

F0(z, t) =
∑
i 6=±1

Fi(z, t) , (4.3)

F (z, t) =
∑
i

Fi(z, t) . (4.4)

Then

〈∆x2
1〉 = 〈x2

1〉 =
∂2F (z, t)

∂z2

∣∣∣∣
z=1

, (4.5)

as from the symmetry of the system, 〈x1〉 = 0 obviously.

Now we have

∂F1(z, t)

∂t
=h(z − 1)F1(z, t)− λF1(z, t) +

λ

2d
F (z, t) , (4.6)

∂F−1(z, t)

∂t
=h

(
1

z
− 1

)
F−1(z, t)− λF−1(z, t) +

λ

2d
F (z, t) , (4.7)

∂F0(z, t)

∂t
=− λF0(z, t) +

λ(2d− 2)

2d
F (z, t) . (4.8)

Differentiating (4.6)-(4.8) with z, taking z = 1, and noticing F±1(1, t) = 1/2d,
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∂F/∂z|z=1 = 0, we have

∂

∂t

∂F1(z, t)

∂z

∣∣∣∣
z=1

=
h

2d
− λ ∂F1(z, t)

∂z

∣∣∣∣
z=1

, (4.9)

∂

∂t

∂F−1(z, t)

∂z

∣∣∣∣
z=1

=− h

2d
− λ ∂F−1(z, t)

∂z

∣∣∣∣
z=1

, (4.10)

∂

∂t

∂F0(z, t)

∂z

∣∣∣∣
z=1

=− λ ∂F0(z, t)

∂z

∣∣∣∣
z=1

. (4.11)

With the initial conditions ∂Fi/∂z|z=1,t=0 = 0, we have

∂F1(z, t)

∂z

∣∣∣∣
z=1

= − ∂F−1(z, t)

∂z

∣∣∣∣
z=1

=
h

2dλ
(1− e−λt) , (4.12)

∂F0(z, t)

∂z

∣∣∣∣
z=1

=0 . (4.13)

Differentiating (4.6)-(4.8) twice with z, we have

∂

∂t

∂2F (z, t)

∂z2

∣∣∣∣
z=1

=2h
∂F1(z, t)

∂z

∣∣∣∣
z=1

− 2h
∂F−1(z, t)

∂z

∣∣∣∣
z=1

+
h

d

=
2h2

dλ
(1− e−λt) +

h

d
. (4.14)

With the initial condition ∂2F (z, 0)/∂z2 = 0, we can get the mean square
displacement

〈∆x2
1〉 =

∂2F (z, t)

∂z2

∣∣∣∣
z=1

=

(
2h2

dλ
+
h

d

)
t+

2h2

dλ2
(e−λt − 1) . (4.15)

In the short time scales, 〈∆x2
1〉 ∝ t2 and the particle shows ballistic motion.

In the large time scales where t � 1/λ, the later term is a constant and of
little importance. Comparing with (2.36) in the continuous space, we found an
artificial term ht/d due to the discretization of space. If we recover the unit of
length, this term should be vt δl/d and tends to 0 for δl→ 0.

Assuming the artificial term to be small, we get a condition for the on-lattice
model to be same with off-lattice model

h� λ

2
. (4.16)

By the hopping rate to be much larger than the tumbling rate, we are taking
the lattice spacing δl to be small enough compared to the mean run length
v/λ of the particle. In such condition the discretization of space doesn’t have
much effects on the physics of the run-and-tumble motion, and we can safely
generalize our conclusion into the continuous space.
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4.2 Lattice model with obstacles

In this section I will formulate the model with the obstacles. Let’s denote the
set of the blocking sites to be B, and define the field η(x) such that

η(x) =

{
0, x ∈ B
1, x /∈ B . (4.17)

When a particle runs into an obstacle, it should stop moving until it tumbles
into another direction without any obstacle in front of it. Then the master
equation needs to be modified as

∂P (x, ei, t, [η])

∂t
=hη(x)P (x− ei, ei, t, [η])− hη(x+ ei)P (x, ei, t, [η])

− λP (x, ei, t, [η]) +
λ

2d

∑
i

P (x, ei, t, [η]) , (4.18)

with P (x, ei, t, [η]) = 0 for x ∈ B. We should notice now the probability
distribution is related with the specific configuration of the obstacles. When we
need to sum over all the configurations of the obstacles, we make an additional
restriction that the probability of finding an obstacle at each site is constant
P{η(x = 0)} = c.

4.3 Mean field approximation

We cannot deal with (4.18) without any approximation. Here I will introduce a
continuous model. This model cannot be obtained by directly taking the lattice
spacing to tend to zero, as it will also take the scattering section of the obstacles
to be zero. So we construct this model from the underlining physics in the
continuous space. As a result, this model serves as a mean field approximation
of (4.18), which means the obstacles are considered to be homogeneous with the
concentration c. It should be valid in the large scales and for the low density
of the obstacles. To be comparable with the on-lattice model, I will use the
hopping rate h instead of the speed v.

The continuous version of the master equation for the running particles pr is
similar with the simple model in Chapter 2. Tumbles change the heading of
the particles, but the particle after tumbling have the probability c to meet an
obstacle, causing a flow from the running particles pr to the blocked particles pb.
The running particles now have a certain probability to meet an obstacle and
stop moving. As the average number of the obstacles that a particle meets in unit
time is hc, we assume the cells have the probability γd(c)hc to be blocked. Here
I introduce a factor γd(c), which seems to be a function of the obstacle density
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and the dimension only according to the simulations. γd(c) > 1 and should arise
from preserving the finite scattering section of the obstacles when passing from
the on-lattice model to the off-lattice model, and causing the particles to feel
an effective density γd(c)c of obstacles in the continuous limitation. It has the
unit of inverse of length if we are not using the dimensionless length. For now I
don’t have a theory to calculate γd(c), but in the next section I will show that
we can obtain the γd(c) from the simulation data. Thus the master equations
for the running particles pr and the blocked particles pb are

∂pr(x, v̂, t)

∂t
=−∇ · (v̂hpr)− λpr − γd(c)hcpr +

λ(1− c)
Ω

ρM , (4.19)

∂pb(x, v̂, t)

∂t
=− λpb +

λc

Ω
ρM + γd(c)hcpr , (4.20)

with

ρM =

∫
(pr + pb) dΩ . (4.21)

The coarse graining of this continuous model is straightforward with the moment
expansion introduced in Chapter 2. I will omit the lengthy deduction here and
only present the effective diffusion coefficient

Deff =
h2λ(1− c)

d[hcγd(c) + λ]2
. (4.22)

If c = 0, it recovers the diffusion coefficient (2.19) of the free run-and-tumble
particles. If c = 1, obviously Deff = 0 and the particle will not be moving
any more. We can expect this approximation to be invalid for the large c. If
c is large enough that all empty sites forms only isolated regions, the particles
cannot move to infinity after infinity time and Deff = 0 unlike (4.22).

The effective diffusion coefficient (4.22) is a monotonic increasing function of
v, but is a bell-shape function of λ. By taking ∂Deff/∂λ = 0, we have the
maximum Deff = (1 − c)h/4dcγd(c) at λ = hcγd(c). For λ < hcγd(c), tumbles
help the particles avoid the obstacles, and increase the diffusion coefficient. It
can explain the experimental observation of an increasing migration rate with
the higher tumbling rate [45].

In addition, if the running particles can undergo Brownian motion, we need to
add D∇2pr in the master equation (4.19), and the effective diffusion coefficient
is

Deff =
h2λ(1− c)

d[hcγd(c) + λ]2
+

λ(1− c)
λ+ hcγd(c)

D . (4.23)

It means the obstacles can also slow down the Brownian motion of the run-and-
tumble particles.
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4.4 Simulation

We can apply the Gillespie simulation (for details, please refer to Section 7.1.1)
to investigate the system defined by the master equations (4.18). Consider a
square lattice with the periodic boundary condition. I put the obstacle with
the probability c on each site, and put the non-interacting particles randomly
on the vacant sites. The simulation was run in the continuous time. I sampled
the happening time of every events, and calculated the average displacement of
all particles after the hopping events. Then a linear fitting is done to the later
part of 〈∆x2(t)〉 to get the effective diffusion coefficient in the large time scales.

Firstly, the influence of the obstacles can be checked, as shown in Figure 4.1.
The diffusion coefficient was decreasing with more obstacles, both in 2D and 3D.
The continuous approximation captured the tendency assuming γd(c) = 1, but
didn’t fit the simulation quantitatively. Here we should mention the discrepancy
of the simulation and the theory at c = 0 is mainly due to the artificial diffusivity
h/2d of discretization discussed in Section 4.1.

As the continuous approximation, the diffusivity increased monotonously with
the increasing hopping rate, regardless of c, as in Figure 4.2. But unlike the
situation without the obstacles in which D ∝ v2, limh→∞D is finite. Higher
hopping rate cannot make the particles move faster, as they will eventually hit
on the obstacles, and only tumbles can help them escape.

For the low c, the 2D system has larger diffusivity than the 3D system, as the
diffusivity of the system with no obstacles should decrease with dimension. We
noticed that for the high c, the diffusivity in the 3D system is larger than the
2D system. It may because the higher dimension makes the particles to have
more choice to escape from the obstacles.

If we plot D with respect to λ, as in Figure 4.3, we can found a bell shape curve
as we expected in last section. Without tumbles, the particles will finally hit
on the obstacles and stop moving. But the high tumbling rate also makes the
cell not able to move. Thus it must have a local maximum in between. With
proper choice of γd(c), the continuous approximation can fit the simulation
pretty well for the small λ. The simulations with the large λ are close to violate
the condition h� λ/2, which may explain the inconsistency.

Interestingly, it seems γd(c), which relates with the effective concentration of
the obstacles, increases with c but decreases with d. We can’t assert anything
for now. More data are needed to confirm this observation.
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Figure 4.1: Diffusion coefficient with respect to obstacle concentration. The
parameters were taken to be h = 10 and λ = 1. The lattice size was 1024×1024,
and 10000 particles were simulated. The total time was taken to be 100, and
the data of 100 > t > 70 were used in fitting the diffusion coefficient. In the
theoretical prediction, γd(c) was taken to be 1.
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Figure 4.2: Diffusion coefficient with respect to hopping rate, with λ = 1.
The lattice size was 1024× 1024, and 10000 particles were simulated. The total
time was taken to be 100, and the data of 100 > t > 70 were used in fitting
the diffusion coefficient. In the theoretical prediction, I took γ2(0.01) = 1.43,
γ3(0.01) = 1.23, γ2(0.1) = 1.64, γ3(0.1) = 1.31, γ2(0.3) = 2.78, γ3(0.3) = 1.58.
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Figure 4.3: Diffusion coefficient with respect to tumbling rate, with v = 10.
The lattice size was 1024× 1024, and 10000 particles were simulated. The total
time was taken to be 100, and the data of 100 > t > 70 were used in fitting
the diffusion coefficient. In the theoretical prediction, I took γ2(0.01) = 1.43,
γ3(0.01) = 1.23, γ2(0.05) = 1.5, γ3(0.05) = 1.25, γ2(0.1) = 1.64, γ3(0.1) = 1.31.



44 CHAPTER 4. RUN-AND-TUMBLE MOTION WITH OBSTACLES



Chapter 5

Interaction of two species

Now we consider the system with interactions between two populations of par-
ticles, based on the density dependent mobility regulations. Such systems can
have phase separation and form spatial structures, and can provide a possible
mechanism for segregation and co-migration. In the biological context, such
system can correspond to two species of cells which can sense the density of
each other. Such so-called quorum sensing can be achieved via some short-
lifetime signal molecules. This is still a on-going project. In this chapter, I will
present some preliminary theoretical result originally from our collaborators and
experimental data.

5.1 Density dependent mobility regulation

First let’s investigate how the density dependent mobility will affect the devel-
opment of the particle density field. As the experimental time scales (∼ 10h)
for observing bacteria colony development is much longer than 1/λ ∼ 1s, we
can make use of the diffusion limit (3.14) introduced in Section 3.1.

∂ρa
∂t

= ∇
[
va
dλa
∇
(

va
1 + λaδa

ρa

)]
. (5.1)

Here the Brownian diffusion is neglected, ρa(x, t) is the density field of particle
a, and the parameters may depend on the density field ρb(x, t) of particle b.

If we assume va = va(ρb), we have

∂ρa
∂t

= ∇
[

v2
a(ρb)

dλa(1 + λaδa)
∇ρa +

va(ρb)v
′
a(ρb)ρa

dλa(1 + λaδa)
∇ρb

]
. (5.2)
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To do the linear analysis, we assume the density field to fluctuate around an
invariant homogeneous field, and write the perturbation in Fourier transforma-
tion,

ρ(x, t) = ρ0 +

∫
δρ(q, t)eiq·x ddx . (5.3)

Substituting into (5.2), and leaving only the linear terms, we have

∂δρa
∂t

= −q2

[
v2
a(ρb0)

dλa(1 + λaδa)
δρa +

va(ρb0)v′a(ρb0)ρa0

dλa(1 + λaδa)
δρb

]
. (5.4)

The variations of ρa are damped by the diffusion term. Hence the first term
predict an exponential decay of a perturbation, and of little importance in the
large time scales. The later term means the dynamic of ρa will response to the
fluctuation of ρb. We should notice the response depends on the sign of v′a(ρb0).
If v′a(ρb0) < 0, which means the velocity of particle a decreases where particle
b is dense, δρa will tend to have the same shape with δρb and the two species
tend to co-migrating. Otherwise if v′a(ρb0) > 0, ∂δρa/∂t ∝ −δρb and the two
species begin to segregate.

The similar conclusions can be made for λ and δ with the same method. The
co-migration happens when v′a(ρb0) < 0, λ′a(ρb0) > 0, or δ′a(ρb0) > 0. The
segregation happens when v′a(ρb0) > 0, λ′a(ρb0) < 0, or δ′a(ρb0) < 0. In summary,
if the mobility of one particle is inhibited by the density of the other one, the
two populations tend to co-migrate, otherwise they tend to segregate. It can be
easily understood, as particles will be stuck and accumulate where their mobility
is low.

5.2 Mutual interactions

If we take into account of the mutual interactions, we can have phase separa-
tion and spatial inhomogeneous structure. The following discussion is originally
made by our collaborators Agnese Curatolo and Julien Tailleur in their un-
published note for the case of density-dependent velocity. Here, I would like
to generalize it to density-dependent tumbling rate and duration, as from the
biochemical pathways the regulation may be on the tumbling rate or duration.

Let’s consider two populations of particles ρa and ρb, and assume the mutual
interaction is regulating the tumbling rate. So λa = λa(ρb), λb = λb(ρa). From
(3.14) we have

∂ρa
∂t

=∇
[

v2
a

dλa(ρb)(1 + λa(ρb)δa)
∇ρa −

v2
aδaλ

′
a(ρb)ρa

dλa(ρb)(1 + λa(ρb)δa)2
∇ρb

]
, (5.5)

∂ρb
∂t

=∇
[

v2
b

dλb(ρa)(1 + λb(ρa)δb)
∇ρb −

v2
bδbλ

′
b(ρa)ρb

dλb(ρa)(1 + λb(ρa)δb)2
∇ρa

]
. (5.6)
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To show the occurrence of instability, we perform the linear stability analysis.
We insert

ρ(x, t) = ρ0 +

∫
δρ(q, t)eiq·x ddx (5.7)

into (5.5) and (5.6). Keeping only the linear terms, we have

∂δρa
∂t

=− q2

[
v2
a

dλa(ρb0)(1 + λa(ρb0)δa)
δρa −

v2
aδaλ

′
a(ρb0)ρa0

dλa(ρb0)(1 + λa(ρb0)δa)2
δρb

]
,

(5.8)

∂δρb
∂t

=− q2

[
v2
b

dλb(ρa0)(1 + λb(ρa0)δb)
δρb −

v2
bδbλ

′
b(ρa0)ρb0

dλb(ρa0)(1 + λb(ρa0)δb)2
δρa

]
.

(5.9)

If the eigenvalues of the coefficient matrix are all negative, the perturbation δρa,b
will decay with time, and the homogeneous states will be stable states. However,
if an eigenvalue become positive, the homogeneous state loses its stability. After
simple calculation, the bifurcation condition for the larger eigenvalue η to be
positive is

λ′a(ρb0)λ′b(ρa0) >
(1 + λa(ρa0)δa)(1 + λb(ρb0)δb)

δaδbρa0ρb0
, (5.10)

and the corresponding eigenvector satisfies(
v2
a

dλa(ρb0)(1 + λa(ρb0)δa)
+ η

)
δρa =

v2
aδaλ

′
a(ρb0)ρa0

dλa(ρb0)(1 + λa(ρb0)δa)2
δρb . (5.11)

As all the parameters are positive, (5.10) means λ′a(ρb0) and λ′b(ρa0) should
have the same sign to have spatial inhomogeneous stable state. λ′a(ρb0) >
0, λ′b(ρa0) > 0 corresponds to the mutual inhibition of motility, and λ′a(ρb0) <
0, λ′b(ρa0) < 0 corresponds to the mutual activation. For the mutual inhibi-
tion, (5.11) indicates that δρa and δρb have the same sign, which means two
populations are in the same phase when instability emerges. For the mutual
activation, the two populations are out of phase as δρa ∝ −δρb.

With only the mobility terms, the bifurcation is not the Turing bifurcation, as
the eigenvalues are independent on q. To have a spatial pattern, we need some
factor to have the coarsening effect to select a specific length scale. Growth can
be one of the candidates. We can include a competing logistic growth term, and
write (5.5) and (5.6) as

∂ρa
∂t

=∇
[
Da(ρb)∇ρa +

D′a(ρb)λa(ρb)δaρa
(1 + 2λa(ρb)δa)

∇ρb
]

+ kaρa

(
1− ρa + ρb

M

)
,

(5.12)

∂ρb
∂t

=∇
[
Db(ρa)∇ρb +

D′b(ρa)λb(ρa)δbρb
(1 + 2λb(ρa)δb)

∇ρa
]

+ kbρb

(
1− ρa + ρb

M

)
,

(5.13)
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where D = v2/dλ(1 +λδ) is the diffusion coefficient we have met before, and M
is the environment capacity. ka and kb are the corresponding growth rate. The
appearance of growth term largely complicate the analysis. The calculation is
lengthy and is omitted here. For the mutual activation situation, we can find
a certain region in parameter space that the largest eigenvalue is positive in a
finite range of q, as shown in Figure 5.1. Here an asymmetry in parameters is
necessary for patterning. For the mutual inhibition case, it is more complex.
The growth term only is not enough for patterning. In M.E. Cates, 2010 [21], a
−κ∇4ρ term, which is a phenomenological surface tension term, is introduced
in the single-species system for patterning, and it is also true for the two-species
system. A thorough discussion is beyond the scope of this thesis.

0.02 0.04 0.06 0.08 0.10
q

-0.0004

-0.0003

-0.0002

-0.0001

Larger eigenvalue

Figure 5.1: The largest eigenvalue of mutual activation system with growth
term. Here we take δa = δb = 0.1, va = vb = 10, ρa0 = ρb0 = 1, ka = kb = 0.1,
λa(ρb0) = λb(ρa0) = 1, λ′a(ρb0) = −12.05, λ′b(ρa0) = −10. The eigenvalue is
positive only in a finite range of q.

The same argument applies for δ and v. If δa = δa(ρb), δb = δb(ρa), the
bifurcation condition without growth is

δ′a(ρb0)δ′b(ρa0) >
(1 + λaδa(ρa0))(1 + λbδb(ρb0))

λaλbρa0ρb0
. (5.14)

And for v, according to the unpublished note of Agnese Curatolo, the condition
without growth is

v′a(ρb0)v′b(ρa0) >
va(ρb0)vb(ρa0)

ρa0ρb0
. (5.15)

After considering the growth of cells, they all show the same phenomenon: If
the two populations have the mutual inhibition of mobility (λ′a,b(ρb0,a0) > 0,
δ′a,b(ρb0,a0) > 0, or v′a,b(ρb0,a0) < 0), the system shows co-migrating pattern. If
the two populations have the mutual activation of mobility (λ′a,b(ρb0,a0) < 0,
δ′a,b(ρb0,a0) < 0, or v′a,b(ρb0,a0) > 0), the system shows segregating pattern.
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The instability of homogeneous state can be understood intuitively. If the den-
sity of particles a increases a little bit from the homogeneous state, particles b
will move faster (or slower). Particles b then accumulate at where they move
slower, which is where a are sparser (or denser). Sparser (or denser) b make
a move slower, causing a to be more denser. Thus the fluctuation is enhanced
and the homogeneous state loses its stability.

5.3 Experimental observation

The pattern suggested in the last section can be realized in the experiments.
We can engineer the bacteria such as E. coli to have such quorum sensing
system. The construct of such system was done by Zhou Nan in our lab. Besides
inserting the quorum sensing circuits, he made the two populations to express
two different fluorescence proteins constantly, in order to distinguish them in
imaging.

Then we need to build the imaging setup for the large scales fluorescence imag-
ing. The difficulty in this setup is to trade off between the height limitation
and the problem of large incident angle. For the fluorescence imaging, we need
to illuminate the sample with monochromatic light, and separate the weak flu-
orescence signal with the illumination light. The common filters we can access
is the interference filters, which require perpendicular incidence of light. For
microscopes, it is easily satisfied as the scale of the image is small enough com-
pared to the filter size and the working distance. But for the large scale imaging,
the sample is of ∼ 10cm diameter while the common filters are only of ∼ 2cm
diameter. So we need to increase the working distance of the setup to prevent
the problem of large incident angle.

The design of the setup is shown in Figure 5.2. We used a rotational stage in this
setup to image multiple samples simultaneously. Putting the whole setup in the
37◦C degree warm room, we can do the time-lapse live imaging. The diffusor is
to make the illumination homogeneously for quantitative imaging. We should
notice that the diffusor may increase the incident angle of the excitation light.
Thus for GFP, the band of the excitation filter and the emission filter should not
be too close. If necessary, we can tilt the lighting system to avoid the light spot
of the light source in the image, and use Fresnel lens to re-focus the background
light to avoid the camera.

Then we can do the pattern formation experiments with the engineered E. coli
strains. We mixed the two strains of E. coli in liquid LB, and planted a drop of
the mixture in the middle of the semi-solid agar plates with half LB. The plates
were kept in a 37◦ degree warm room for 10 hours for patterns to grow. The
samples were prepared by Zhou Nan in our lab.
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LED

Excitation filter

Diffusor

Rotational stage

Fresnel lens

Emission filter

Camera

Backgound light

Figure 5.2: Design of large scale fluorescence imaging setup.
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The preliminary data is shown in Figure 5.3. We can see the experimental result
can support our prediction from the theory. The mutual activation strains show
a segregating ring pattern, and the mutual inhibition strains show a co-migrating
ring pattern. The inhomogeneous background may due to the inhomogeneous
illumination of our old setup. The further work will be discussed in Chapter 9.
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Figure 5.3: Patterns formed by two strains of E. coli with mutual activating
and mutual inhibiting motility. The two strains were labelled with GFP and
mCherry respectively. The fluorescence intensity profiles on the blue dashed
line in the photos are shown below.



Chapter 6

Differential dynamic
microscopy (DDM)

Now we introduce a novel method, based on the formulism used in Chapter 2 and
3, for measuring the microscopic parameters of the run-and-tumble particles,
such as the swimming speed and the tumbling rate.

6.1 Intermediate scattering function (ISF)

Considering point particles, the microscopic particle density can be written as

ρ(x, t) =

N∑
k=1

δ(x− xk(t)) , (6.1)

where the xi(t) is the trajectory of the i-th particle, N is the number of the
particles, and δ(x) is the Dirac delta function. The instantaneous microscopic
particle density is related to the smooth macroscopic density by an ensemble
average

ρM (x, t) = 〈ρ(x, t)〉e . (6.2)

The Fourier transform of the microscopic density is

ρ(q, t) =

N∑
k=1

e−iq·xk(t) . (6.3)

We define the intermediate scattering function (ISF) as the normalized
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autocorrelation of the particle density fluctuation

f(q, τ) =
〈∆ρ(q, τ)∆ρ∗(q, 0)〉e
〈∆ρ(q, 0)∆ρ∗(q, 0)〉e

, (6.4)

where ∆ρ(q, 0) = ρ(q, 0)−〈ρ〉e is the fluctuation of the density around its expec-
tation. The ensemble is taken with the same system with the same population
of the particles. The initial position of each particle should obey the uniform
probability distribution.

If the system is ergodic (as diffusion and tumble make the particle be able
to reach every position in the configuration space), we can exchange all the
ensemble average with the time average

〈A(0)〉e = 〈A(t)〉t . (6.5)

Here the time average is defined as

〈f(t)〉t = lim
T→∞

1

T

∫ T/2

−T/2
f(t) dt , (6.6)

and is invariant under time translation.

By direct substitution, it is easily shown that

〈∆ρ(q, t+ τ)∆ρ∗(q, t)〉t = 〈ρ(q, t+ τ)ρ∗(q, t)〉t − |〈ρ(q, t)〉t|2 , (6.7)

and

〈∆ρ(q, t)∆ρ∗(q, t)〉t = 〈|ρ(q, t)|2〉t − |〈ρ(q, t)〉t|2 , (6.8)

ρ(q = 0, t) = N is just the total number of particles, which is assumed to
be constant and of no interest. So we only focus on q 6= 0. Considering the
non-interacting point particles, we have

〈ρ(q, t+ τ)ρ∗(q, t)〉t = 〈
N∑

j,k=1

e−iq·(xk(t+τ)−xj(t))〉t

=

N∑
k=1

〈e−iq·(xk(t+τ)−xk(t))〉t +
∑
k 6=j

〈e−iq·(xk(t+τ)−xj(t))〉t .

(6.9)

We assume the motion of different particles is uncorrelated statistically, the
latter term becomes∑

k 6=j

〈e−iq·(xk(t+τ)−xj(t))〉t =
∑
k 6=j

〈e−iq·xk(t)〉t〈eiq·xj(t)〉t . (6.10)
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Similarly,

〈ρ(q, t)ρ∗(q, t)〉t =

N∑
k=1

〈e−iq·(xk(t)−xk(t))〉t +
∑
k 6=j

〈e−iq·(xk(t)−xj(t))〉t

= N +
∑
k 6=j

〈e−iq·xk(t)〉t〈eiq·xj(t)〉t . (6.11)

Then the ISF becomes

f(q, τ) =

∑N
k=1〈e−iq·(xk(t+τ)−xk(t))〉t −

∑N
k=1 |〈e−iq·xk(t)〉t|2

N −
∑N
k=1 |〈e−iq·xk(t)〉t|2

. (6.12)

Now exchanging the time average with the ensemble average, we have

〈e−iq·xk(t)〉t = 〈e−iq·xk(0)〉e =
1

V

∫
V

e−iq·x d3x . (6.13)

As we take a large enough system that the boundary effect can be neglected,
we take the limitation that V →∞, the integration will tend to δ(q). Thus we
have

N∑
k=1

|〈e−iq·xk(t)〉t|2 = 0 , for q 6= 0 , (6.14)

and the ISF becomes

f(q, τ) =
1

N

N∑
k=1

〈e−iq·(xk(τ)−xk(0))〉e =
1

N

N∑
k=1

∫
e−iq·x〈δ(x−∆xk(τ))〉e d3x ,

(6.15)
where ∆xk(τ) = xk(τ) − xk(0). If we construct a new ensemble from the real
one, with the systems in which we translate the initial position of every particle
to be at the origin, xk(0) = 0. Then the summation

N∑
k=1

δ(x−∆xk(τ)) = ρ(x, τ) (6.16)

is just the microscopic density of the new system, and its ensemble average is
just the macroscopic density, so

f(q, τ) =
1

N

∫
e−iq·xρM (x, τ) d3x =

1

N
ρM (q, τ) = p(q, τ) . (6.17)

Here p(q, τ) is the Fourier transform of the spatial probability distribution given
that the initial distribution to be δ(x), and can be solved from the corresponding
master equation. We have already solved it for various models.

Special caution should be taken for the straight swimmers and (6.12). Although
the straight swimmers without diffusion is not ergodic, the conclusion above still
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holds. As the average 〈e−iq·xk(0)〉e = δ(q) = 0 already for q 6= 0, the ensemble
average is easily done to get (6.15). And we don’t need to bridge the microscopic
and the macroscopic densities, since without Brownian diffusion, the system is
purely deterministic without dispersion.

It should be noted that (6.17) indicates the ISF is additive due to the additivity
of probability distribution. If the system can be divided into two subsystems
which obey the probability distributions p1 and p2, the ISF of the whole system
should be αp1 + (1 − α)p2, where α is the fraction of the population of one
subsystem. We will use this property in the treatment of the models we consider.

6.2 Differential dynamic microscopy (DDM)

The two expressions of ISF in the last section give the foundation of differential
dynamic microscopy.

f(q, τ) =
〈∆ρ(q, t+ τ)∆ρ∗(q, t)〉e
〈∆ρ(q, t)∆ρ∗(q, t)〉e

= p(q, τ) . (6.18)

From the first expression with exchanging the ensemble average with the time
average, we can measure experimentally the ISF of a given system, while the
last expression enable us to theoretically calculate the ISF from its microscopic
mechanism. If we compare the theoretical calculation of ISF with experimental
measurement, we are able to know the detail of its microscopic mechanism.

To measure experimentally the auto-correlation of the particle density fluctua-
tion, we follow the steps of Wilson and Martinez, et al [33]. We assume that
the fluctuation of the image intensity is proportional to the fluctuation of the
density,

∆I(x, t) = κ∆ρ(x, t) , (6.19)

we can Fourier transform the image intensity, calculate the module square of
the image difference, and do the time average

g(q, τ) = 〈|I(q, t+ τ)− I(q, t)|2〉t . (6.20)

Since I(q, t) = 〈I〉t + ∆I(q, t) where 〈I〉t is independent of t, we have

g(q, τ) = 〈|I(q, t+ τ)− I(q, t)|2〉t = 〈|∆I(q, t+ τ)−∆I(q, t)|2〉t
= 〈|∆I(q, t+ τ)|2〉t + 〈|∆I(q, t)|2〉t − 2Re 〈∆I(q, t+ τ)∆I∗(q, t)〉t .

(6.21)

However, for the isotropic systems, p(x,v, t) should be an even function of x
as p(x,v, 0) ∝ δ(x) is an even function, and p(q,v, t) should be real. Thus as
inferred by (6.19),

〈∆I(q, t+ τ)∆I∗(q, t)〉t = κ2〈∆ρ(q, t+ τ)∆ρ∗(q, t)〉t (6.22)
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should be real already. Then

g(q, τ) = 2〈|∆I(q, t)|2〉t − 2〈∆I(q, t+ τ)∆I∗(q, t)〉t

= 2〈|∆I(q, t)|2〉t
(

1− 〈∆ρ(q, t+ τ)∆ρ∗(q, t)〉t
〈∆ρ(q, t)∆ρ∗(q, t)〉t

)
= A(q)(1− f(q, τ)) , (6.23)

where A(q) = 2〈|∆I(q, t)|2〉t. To capture the background noise, we further add
an additional term B(q) to the last equation, so we have

g(q, τ) = A(q)(1− f(q, τ)) +B(q) . (6.24)

As for the isotropic systems, ρ and p should be independent of the direction
of q, so we can average the q direction in the experimental data and drop the
direction dependence to get

g(q, τ) = A(q)(1− f(q, τ)) +B(q) , (6.25)

and this is the equation we are going to fit.

In practice, we cannot capture the vertical motion by an usual microscope, and
measure ∆I(x, t) in three dimensions. The measured intensity fluctuation is
actually proportional to ∫ d/2

−d/2
∆ρ(x, y, z)c(z) dz (6.26)

where c(z) is a contrast function in the vertical direction, and d is the depth of
view of the imaging system. It will not be a problem if d → ∞ and c(z) = 1,
since by means of integration, we are looking at qz = 0 plane in q space without
losing any information, so the two-dimensional measurement can resolve the
three-dimensional motion. However, in practice, d is always finite and c(z) is
like [34]

c(z) = C0

(
1− 4z2

d2

)
. (6.27)

It will mix the contribution of the components with different qz. Martinez, et
al [34] did some simulations to investigate this effect, and found that simulated
g(q, τ) was distorted for q . 2π/d, but stayed fine for q & 2π/d.

6.3 Intermediate scattering function for differ-
ent models

6.3.1 The run-and-diffuse model (RD model)

For the straight swimmers, we can use the solution we got in Section 2.5.2.
In practice, we need to include the contribution of the dead cells, which are
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not swimming but undergoing Brownian motion. Making use of the additivity
mentioned at the end of Section 6.1, the ISF for the run-and-diffuse model is

f(q, τ) = (1− α)e−Dq
2τ + αe−Dq

2τ sin(vqτ)

vqτ
, (6.28)

and α is the fraction of the swimming cells.

But this ISF is of little use in practice, so we often consider the ISF described
in the following section.

6.3.2 The run-and-diffuse model with P (v) (RDP model)

Usually the cells don’t have an unique speed, but obey some distribution P (v)
instead. To implement this feature in the model, we can simply use the addi-
tivity of the probability density, and the new ISF will be

f(q, τ) = (1− α)e−Dq
2τ + αe−Dq

2τ

∫ ∞
0

sin(vqτ)

vqτ
P (v) dv . (6.29)

It’s easily shown that the previous model is just a special case for P (v) = δ(v−v̄).

In practice, we use the Schultz distribution to approximate the real distribution,
same with Wilson and Martinez, et al [33, 34].

P (v) =
vZ

Γ(Z + 1)

(
Z + 1

v̄

)Z+1

e−(Z+1)v/v̄ , (6.30)

where v̄ is the average of v, the standard deviation is σ = v̄/
√
Z + 1, and Γ(x)

is the gamma function. This distribution is a bell-shape curve of v, with the
maximum at v̄. If Z → ∞, it will reduce to the delta distribution P (v) =
δ(v − v̄). Using this distribution, the integration can be evaluated analytically
to get

f(q, τ) = (1− α)e−Dq
2τ + αe−Dq

2τ

(
Z + 1

Zqv̄τ

)
sin(Z arctan ξ)

(1 + ξ2)Z/2
, (6.31)

where ξ = qv̄τ/(Z + 1).

To get an intuition of this intermediate scattering function, we can plot f(q, τ)
with respect to τ with fixed q. As shown in Figure 6.1. As a normalized
autocorrelation function, f(q, 0) = 1 and limτ→∞ f(q, τ) = 0. Clearly the curve
of f(q, τ) is divided into two parts. The separation of the two parts is due to
the different time scales of diffusion and ballistic motion. The fast decay in the
low τ < τbal ∼ 1/vq part is due to the ballistic motion of particles, which is
regulated by v̄. The second part with τ > τdiff ∼ 1/Dq2 is a plateau of diffusion,
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which is regulated by D. The variation in q shifts the connection of the two
parts, and the variation in α changes the relative height of the two parts as
in Figure 6.2. Changing v̄ will shift the first part but leave the second part
unmoved, while change D will change the plateau of the second part but leave
the first part aligned. The σ (or Z) affects mainly the shape of the junction
of the two parts. The lower σ will help exhibit the oscillation due to the sinc
function in ISF.

Figure 6.1: RDP ISF f(q, τ) with respect to τ with different q. The other
parameters were taken to be α = 0.8, D = 0.4, v̄ = 13, Z = 15.

6.3.3 The run-and-tumble-and-diffuse model (RTD model)

As in Section 6.3.1, we include the contribution of the non-moving cells. Recall-
ing the result in Section 2.4, the ISF for the run-and-tumble-and-diffuse model
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Figure 6.2: RDP ISF f(q, τ) with respect to τ with different parameters. q = 1
was taken in all figures. In the upper-left figure, v̄ = 13, D = 0.4, Z = 15.
In the upper-right figure, α = 0.8, v̄ = 13, Z = 15. In the lower-left figure,
α = 0.8, D = 0.4, Z = 15. In the lower-right figure, α = 0.8, v̄ = 15, D = 0.4.
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is

f(q, τ) = (1− α)e−Dq
2τ + αp(q, τ) , (6.32)

where p(q, τ) is the inverse Laplace transform of (2.32),

p(q, s) =
arctan(qv/(s+Dq2 + λ))

qv − λ arctan(qv/(s+Dq2 + λ))
, (6.33)

and α is the fraction of the swimming cells.

However, this ISF is also of little use in practice. The reason is the same with
ISF of RD model.

6.3.4 The run-and-tumble-and-diffuse model with P (v) (RTDP
model)

The reason that the speed of the cells should obey some distribution P (v) is
identical with Section 6.3.2. Same modifications as (6.29), the ISF should be

f(q, τ) = (1− α)e−Dq
2τ + α

∫ ∞
0

p(q, t)P (v) dv , (6.34)

where p(q, t) is the inverse Laplace transform of (6.33).

As in Section 6.3.2, we use the Schultz distribution to approximate the real
distribution.

P (v) =
vZ

Γ(Z + 1)

(
Z + 1

v̄

)Z+1

e−(Z+1)v/v̄ , (6.35)

where v̄ is the average of v, the standard deviation is σ = v̄/
√
Z + 1, and Γ(x)

is the gamma function.

To make sense of the effect of the new parameter λ, we tune λ to plot the f(q, τ),
as shown in Figure 6.3. The overall features remain unchanged. The effect of λ
is also on the junction of the two parts of the curve, and is quite similar to the
effect of σ, except for λ has a little influence to the first decay part of the curve.
The effect of λ is more significant for the low q. It suggests in the experiments
we need to focus on the low q data to fit λ, and fix v̄ and σ precisely to fit λ,
otherwise the algorithm will tune v̄ and σ instead of λ to finish the fitting. The
details can be found in Section 7.5.
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Figure 6.3: RTDP ISF f(q, τ) with respect to τ with different λ and σ. q = 1
was taken in both figures. In the left figure, α = 0.8, v̄ = 13, D = 0.4, Z = 15.
In the right figure, α = 0.8, v̄ = 13, D = 0.4, λ = 1.
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6.3.5 The run-and-tumble-and-diffuse model with P (v) and
tumbling time (RTDPTT model)

Same modifications with (6.29), the ISF is

f(q, τ) = (1− α)e−Dq
2τ + α

∫ ∞
0

p(q, τ)P (v) dv , (6.36)

where p(q, t) is the inverse Laplace transform of (3.29)

p(q, s) =
qvδ2λ+ [1 + δ(Dq2 + 2λ+ s)] arctan(qv/(Dq2 + λ+ s))

(1 + δλ)[qv(1 + δDq2 + δs)− λ arctan(qv/(Dq2 + λ+ s))]
, (6.37)

and we choose the Schultz distribution again.

P (v) =
vZ

Γ(Z + 1)

(
Z + 1

v̄

)Z+1

e−(Z+1)v/v̄ . (6.38)

To make sense of the effect of the new parameter δ, we tune δ to plot the f(q, τ),
as shown in Figure 6.4. The overall features remain unchanged. The effect of
δ is also mainly on the junction of the two parts, and the effect is significant
for a large q range. Now we have three parameters in total that work on the
junction of two decay parts of ISF: σ, λ, and δ. The mixing in the time scales
of the three parameters will bring us a lot of trouble in fitting. The details can
be found in Section 7.7.



64 CHAPTER 6. DIFFERENTIAL DYNAMIC MICROSCOPY

Figure 6.4: RTDPTT ISF f(q, τ) with respect to τ with different δ. The other
parameters were set to be q = 1, α = 0.8, v̄ = 13, D = 0.4, Z = 15 (or σ = 3.25),
λ = 1.



Chapter 7

DDM Simulation

To test the algorithm for DDM, it is instructive to do the agent based simula-
tions to generate data comparable to the experiments, and then process these
simulation data to see if DDM can find the parameters we set in the simulations.

7.1 Agent based model

We used agent based simulations to simulate the motion of every particles in
the system. The simulations are done in a continuous time scheme, using the
traditional Gillespie stochastic simulation algorithm to sample each ”event” of
the system. The event may refer to tumbles or recovery from tumbling. Between
two successive events, the displacement of a particle is calculated by

∆xi = vi∆t+ ∆xdi , (7.1)

where ∆t is the time difference between two events, and ∆xdi ∼ N(µ = 0, σ2 =
2D∆t) is the contribution of Brownian diffusion. Here D is the Brownian diffu-
sion constant. Then we can get the position and the velocity of every particles at
every time for which we construct the intermediate scattering function f(q, τ).

7.1.1 Gillespie stochastic simulation algorithm

We sampled all the events of the system at the beginning of the simulations.
As we were simulating non-interacting particles, we can sample the events of
every particles separately, and then sorting all the events by time. In some
simple cases we can also run the sampling with N ”reactions”, to get a list of
the events of the whole system directly, where N is the number of the particles.

65



66 CHAPTER 7. DDM SIMULATION

For each particle, we assume an event (tumbling or recovery) has the probability
ν dt to happen in the time interval dt. If P0(τ) is the probability that no event
happens in range (t, t+ τ), we have

P0(τ + dτ) = P0(τ) (1− ν dτ) , (7.2)

which gives an ordinary differential equation

dP0

dτ
= −νP0 . (7.3)

With the initial condition P0(0) = 1, we have

P0(τ) = e−ντ (7.4)

and the probability that an event happens in (t+ τ, t+ τ + dτ) is

P0(τ)ν dτ = νe−ντ dτ . (7.5)

Then we need to sample τ according to the distribution νe−ντ to generate a list
of time of the events.

If we have N reactions, the probability distribution Pi(τ) that the i-th reaction
is the first reaction happened in (t+ τ, t+ τ + dτ) needs a minor generalization

Pi(τ) dτ = P0(τ)νi dτ = νie
−

∑N
i=1 νiτ dτ . (7.6)

And in this case we need to sample τ and i successively. The single particle
simulation is just the case N = 1.

To sample τ and i according to the above distribution, we can sample r1 and
r2 in uniform distribution in (0, 1). Then we have

τ = − ln r1∑N
j=1 νj

, (7.7)

and i is just the minimal integer such that

i∑
j=1

νj > r2

N∑
j=1

νj . (7.8)

7.1.2 Rotational diffusion

To simulate the rotational diffusion of a particle, we need to sample it’s direction
after a period of time. Denoting the probability distribution of the direction of
the particle as P (θ, φ, t), given the initial condition P (θ, φ, 0) = δ(θ − θ0)δ(φ−
φ0)/ sin θ, it satisfies

∂P

∂t
= −DrL̂2P , (7.9)
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where

L̂2 = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2
(7.10)

is the total angular momentum operator. Expanding P (θ, φ, t) in the spherical
harmonics

P (θ, φ, t) =

∞∑
l=0

l∑
m=−l

alm(t)Y ml (θ, φ) (7.11)

where

Ylm(θ, φ) = (−1)m

√
(2l + 1)(l −m)!

4π(l +m)!
Pml (cos θ)eimφ (7.12)

is the spherical harmonics, and

Pml (x) = (−1)l+m
(l +m)!

(l −m)!

1

2ll!(1− x2)m/2
dl−m

dxl−m
[(1− x2)l] (7.13)

is the associated Legendre polynomial, we have

∂alm
∂t

= −Drl(l + 1)alm , (7.14)

alm(t) = alm(0)e−Drl(l+1)t . (7.15)

As

alm(0) =

∫ 2π

0

dφ

∫ π

0

dθ δ(θ − θ0)δ(φ− φ0)Y ∗lm(θ, φ) = Y ∗lm(θ0, φ0) , (7.16)

we have

alm(t) = Y ∗lm(θ0, φ0)e−Drl(l+1)t . (7.17)

Substituting it into (7.11) and making use of the addition theorem of the spher-
ical harmonics

l∑
m=−l

Y ∗lm(θ0, φ0)Ylm(θ, φ) =
2l + 1

4π
Pl(cos γ) , (7.18)

we have

P (θ, φ, t) =

∞∑
l=0

2l + 1

4π
Pl(cos γ)e−Drl(l+1)t . (7.19)

Here Pl(x) is the Legendre polynomial of degree l (P 0
l ), and γ is the angle

between the directions (θ, φ) and (θ0, φ0), satisfying

cos γ = sin θ0 sin θ cos(φ− φ0) + cos θ0 cos θ . (7.20)
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Having (7.19), we can implement the rejection method to sample θ and φ for an
arbitrary time interval t. As Pl(x) < 1, the probability distribution is bounded
by

Pmax =

∞∑
l=0

2l + 1

4π
e−Drl(l+1)t . (7.21)

Then we sample cos θ and φ uniformly on (−1, 1) and (0, 2π), and calculate
P (θ, φ, t). If another uniform random variable ν ∈ (0, 1) satisfies Pmaxν <
P (θ, φ, t), we accept the pair (θ, φ) as a sample.

However, for the small
√

2Drt, the probability distribution will be too narrow
that the algorithm has terrible efficiency. Here we used a trick to sample only
a small patch around the original velocity direction. If γT = 5

√
2Drt < 0.4rad,

Pl(cos γT ) is technically 0, we assumed the distribution is constrained in γ < γT .
For simplicity, we first sampled (cos θ, φ) uniformly in a circular patch around
the north pole (1− cos γT , 1)× (0, 2π), and then rotated the patch to be around
the original velocity direction. As the original velocity direction is along (θ0, φ0),
we first rotated around the x-axis about the angle −θ0, then around the z-axis
about the angle φ0 − π/2. The rotation matrix was

R =

cos
(
φ0 − π

2

)
− sin

(
φ0 − π

2

)
0

sin
(
φ0 − π

2

)
cos
(
φ0 − π

2

)
0

0 0 1

1 0 0
0 cos(−θ0) − sin(−θ0)
0 sin(−θ0) cos(−θ0)


=

 sinφ0 cos θ0 cosφ0 sin θ0 cosφ0

− cosφ0 cos θ0 sinφ0 sin θ0 sinφ0

0 − sin θ0 cos θ0

 . (7.22)

Then we used the rejection method on the rotated region. This algorithm worked
efficiently.

7.2 Constructed ISF

Sometimes it’s hard to get an analytical expression of ISF, but we can construct
it from simulations into arbitrary precision. It will help us test the model
deduction and the numerical evaluation of the theoretical ISF. We can do the
construction by using the first equation of (6.15)

f(q, τ) =
1

N

N∑
k=1

〈e−iq·∆xk(τ)〉e . (7.23)

As the particles are independent, we can simply increase the number of par-
ticles N to improve the ensemble average. As ISF for an isotropic system is
independent of the direction of q, we can take an average on the directions of q
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to get

f(q, τ) =
1

4πN

N∑
k=1

∫ 2π

0

dφ

∫ π

0

e−q∆xk(τ) cos θ sin θ dθ =
1

N

N∑
k=1

sin(q∆xk)

q∆xk
.

(7.24)

Then we can simulate N particles, with random directions of velocity and initial
positions at the origin. At each time τ , the displacement of the particles is just
∆xk(τ) = xk(τ) − xk(0) = xk(τ). For each choice of q, we simply do the
summation in (7.24).

Using constructed ISF, we can also find the number of particles we need to
get a good statistics. As an example shown in Figure 7.1. For N . 103,
the constructed ISF is quite noisy compared with the numerical evaluation of
analytical expression. But for N & 104, the statistics will be good enough to
give an ISF with little noise. This means in experiments we should make the
cell number in the view to be of the order higher than 103. In this study, we
often took N = 105.

7.3 Constructed ISF for rotational diffusion

With the constructed ISF, we can investigate the effect of biased tumbling,
which means the change of the particle direction is not isotropic. We simulated
tumbling events as active rotational diffusion. A reference for the rotational
diffusion constant is Dra = 3.5s−1, and the mean tumbling duration δ = 0.14s.
Then the mean tumbling angle is

√
2Drδ ≈ 57◦. As reported by [25], Dra =

3.5s−1 and δ = 0.14s best fitted the experiments.

The constructed ISF f(q, τ) with respect to τ for different q is shown in Figure
7.2. We noticed the effect of a finite Dra was limited to the small q, and just on
the junction of the two parts of the curve. So we can expect the fitting result of
the data of particles with active rotational diffusion tumbling should be similar
to the particles with isotropic tumbling for the large q.

Then we add a weak rotational diffusion effect during particle running to the
model with active rotational diffusion, with Dra = 3.5s−1 and δ = 0.14s. The
constructed ISF is shown in Figure 7.3. A non-zero Dr has only a little effect on
the low q region, and can be neglected for the parameter range we often meet
in E. coli systems.

Thus we can expect the fitting of simulations with an weak rotational diffusion
effect will not change much to the result of the particles without rotational
diffusion. Our simulation data confirmed the expectation, but are not shown
here.
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Figure 7.1: Constructed RTDP ISF for different number of particles N . The
solid line is from the numerical inverse Laplace transform of analytical expres-
sion. The parameters are α = 0.8, v = 13µm/s, Z = 15, λ = 1s−1, D =
0.4µm2/s .
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Figure 7.2: ISF f(q, τ) of RTDPTT particles with active rotational diffusion
with respect to τ with different Dra. The ISF was constructed from simulations
of 105 particles, with the other parameters set to be α = 0.8, v̄ = 13, D = 0.4,
Z = 15 (or σ = 3.25), λ = 1, δ = 0.14.
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Figure 7.3: ISF f(q, τ) of RTDPTT particles with rotational diffusion and active
rotational diffusion with respect to τ with different Dr. The ISF was constructed
from simulations of 105 particles, with the other parameters set to be α = 0.8,
v̄ = 13, D = 0.4, Z = 15 (or σ = 3.25), λ = 1, δ = 0.14, Dra = 3.5.
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7.4 DDM simulation

We refer to the simulations that resemble the generation of experimental data
as DDM simulations. In DDM simulations, a given number of particles move
in a cuboid container with the specific size L× L×D. The boundary is taken
to be periodic to keep the constant density, which means when a particle move
across the boundary, it will appear from the opposite boundary.

The initial positions of the particles is uniformly sampled in the container.
To generate a snapshot, at each time point, we take a region −l/2 < x, y <
l/2, −d/2 < z < d/2 in the container, where l < L is the size of the image, and
d < D is the depth of field. We project all the particles in the region to the x-y
plane with a weight (contrast) function

C(z) = 1− 4z2

d2
. (7.25)

Then we smear the shadow of each particle into the pixel containing this particle
and the eight neighbour pixels. The grey level value of the pixel is determined
by the position of the particle inside the pixel. Denoting the shortest distance
(divided by the pixel size) between the particle position and the grids to be
(δx, δy) (Figure 7.4), where without loss of generality we assume δx, δy < 0.5,
the weight of the grey level value of each pixel is shown in Figure 7.4 [46]. Then
we add the contribution of all the particles linearly to get a snapshot, as Figure
7.5. We can do DDM on these snapshots to test the algorithm.
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Figure 7.4: Stretch of how we smear a particle into 9 pixels. The expression in
each pixel denotes the weight of the grey level value. The weights sum up to 1.
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Figure 7.5: An example of snapshots of DDM simulation.

7.5 Run-and-tumble-and-diffuse particles with P (v)
(RTDP particles)

We first fitted the constructed ISF of run-and-tumble-and-diffuse particles with
P (v), giving the good initial guesses of α and v̄ (if not, the fitting iterations
may be trapped by another local minimum). The noise in the constructed ISF
is low enough that the fitting gave good estimations for the data of q . 1.2µm−1

(Figure 7.6). For the large q, the ISF becomes insensitive to λ, and the fitting
began to deviate from the exact value.

Fitting the data from DDM simulation of RTDP particles with the RTDP model
also requires good estimations of α and v̄. We can do a fitting with the RDP
model firstly. The result is shown in Figure 7.7. The fitting can give good
estimations of α, v̄ and D, but a bad estimation of Z. As indicated in Section
6.3.4, it is because the tumbles don’t affect the ballistic part and the diffusive
part of ISF. Then we can use these result to be the initial guesses of RTDP
fitting.

Directly fitting the DDM simulation data with the RTDP model can not give
all the parameters. As shown in Figure 7.8, the fitting cannot find a precise λ
due to its insensitivity and the mixing of effects with σ. However, we are able
to get good estimations of α, v̄, σ (or Z), and D in a reasonable range of q.
So we can do a second fitting, with all of these parameters fixed, to get a good
estimation of λ. As shown in Figure 7.9. Figure A.1 shows the goodness of the
fitting.

In the simulations, we noted that the goodness of the fitted λ will largely depend
on the error in the estimation of v̄, where a small change in v̄ can give rise to a
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Figure 7.6: Fitting result of constructed ISF of RTDP particles with RTDP
model, without fixing any parameters. The initial estimations of α and v̄ were
chosen to be their exact values. The red line denotes the settings in the sim-
ulation, which are α = 0.8, v̄ = 13µm/s, Z = 15, λ = 1s−1, D = 0.4µm2/s .
The green dashed lines denotes the initial guesses in fitting. The ISF data were
constructed from 105 particles.
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Figure 7.7: Fitting result of DDM simulation of RTDP particles with RDP
model. The red line denotes the settings in the simulation, which are α =
0.8, v̄ = 13µm/s, Z = 15, D = 0.4µm2/s . The green dashed lines denotes
the initial guesses in fitting. The simulation was done with the particle density
5 × 10−4µm−3, the pixel size of 1.625µm, the image size of 512 × 512 pixels,
and the depth of field of 40µm. Averaging the data in q < 1.934µm−1 (with
the extraordinary points excluded), we can get α = 0.787 ± 0.007, v̄ = 12.7 ±
0.2µm/s, Z = 9± 3, D = 0.44± 0.05µm2/s.
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Figure 7.8: Fitting result of DDM simulation (same with Figure 7.7) of RTDP
particles with RTDP model, without fixing any parameters. The red line denotes
the settings in the simulation, which are α = 0.8, v̄ = 13µm/s, Z = 15, λ =
1s−1, D = 0.4µm2/s . The green dashed lines denotes the initial guesses in
fitting. The simulation was done with the particle density of 5×10−4µm−3, the
pixel size of 1.625µm, the image size of 512× 512 pixels, and the depth of field
of 40µm. Averaging the data in q < 1.934µm−1 (with the extraordinary points
excluded), we can get α = 0.792±0.006, v̄ = 13.1±0.2µm/s, σ = 3.3±0.4µm/s,
λ = 0.9± 0.6s−1, D = 0.42± 0.02µm2/s.
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Figure 7.9: Fitting result of same DDM simulation with Figure 7.8 of RTDP
particles with RTDP model, with fixed α = 0.792, v̄ = 13.1µm/s, σ = 3.3µm/s,
D = 0.42µm2/s. The red line denotes the settings in the simulation, which is λ =
1s−1. The green dashed lines denotes the initial guesses in fitting. Averaging
the data in 0.5µm−1 < q < 1.5µm−1 (with the extraordinary points excluded),
we can get λ = 1.1± 0.1s−1.
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λ(q) dependency. But the flatness of λ(q) dependence also enable us to correct
the small error in the estimation of v̄, as shown in Figure 7.10.

Figure 7.10: Fitting result of same DDM simulation with Figure 7.7 of
RTDP particles with RTDP model, with fixed α = 0.792, σ = 3.29µm/s,
D = 0.42µm2/s. We tuned v̄ (in the unit of µm/s) around its precise value,
to show the influence of the error in v to the fitting of λ. The red line denotes
the λ in the simulation, which is 1s−1.

The fitting results of the DDM simulations with different λ suggested the al-
gorithm is robust. We also found that a larger pixel size may give a better
estimation of v and thus λ, as Figure A.2, A.3, A.4, A.5.
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7.6 Run-and-tumble-and-diffuse particles with P (v)
and P (λ)

Then instead of setting the same tumbling rate λ for all the particles, we simu-
lated a group of particles whose λ satisfy a Schultz distribution

P (λ; λ̄, Zλ) =
λZλ

Γ(Zλ + 1)

(
Zλ + 1

λ̄

)Zλ+1

e−(Zλ+1)λ/λ̄ , (7.26)

where λ̄ is the average of λ, the standard deviation is σλ = λ̄/
√
Zλ + 1, and

Γ(x) is the gamma function. As shown in Figure 7.11, with the goodness of the
fitting shown in A.6, we found that the distribution has little influence to ISF,
making the fitting find the mean value of λ. We also tested the situation that λ
satisfies a more complicated distribution, like a double-peak Schultz distribution
0.5P (λ; 1, 8) + 0.5P (λ; 5, 15), but the conclusion is the same, as Figure A.7 A.8.

This may due to the insensitivity of the ISF to λ. If we expand f(q, s;λ) =
p0(q, s) + p1(q, s)λ + p2(q, s)λ2 + O(λ3) in terms of λ, usually for the ordinary
values of parameters, we have p0 � p1 � p2, where ”�” often means two
orders of magnitude larger. This not only means the ISF is not sensitive to λ,
but also indicates that the linear approximation of f(q, s;λ) is already a good
one, making the shape of P (λ) has little contribution to the ISF except for its
mean value.

7.7 Run-and-tumble-and-diffuse particles with P (v)
and tumbling duration (RTDPTT particles)

Firstly, we constructed the ISF of run-and-tumble-and-diffuse particles with
P (v) and tumbling duration from a simulation, and fitted it with the RTDPTT
model, as shown in Figure 7.12 and 7.13. Comparing the two fittings with
different initial guesses, we should notice the fitting now depends on the initial
guesses of the parameters. Later we will see, besides the initial guesses of α and
v̄, the fitting result is largely dependent on λ.

Then we can do the same protocol with the RTDP particles. The RDP fitting
result is shown in Figure 7.14. Compared with Figure 7.7, as an effect of the
non-zero tumbling duration, v̄ gets underestimated, and a q-dependence of α
and v̄ becomes obvious. The discrepancy of fitted v̄ and the exact value in the
low q limit is roughly of a factor 1/

√
1 + δλ, which corresponds to the discussion

of (3.32) in Section 3.1.2. If we do the RTDP fitting, we will find a strong λ(q)
dependence in the second fitting, as well as some weak q-dependence of α, v̄,
and σ. The λ(q) dependence prevents us from finding a good estimation of λ. If
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Figure 7.11: Fitting result of DDM simulation of RTDP (with P (λ)) particles
with RTDP model, without fixing any parameters. The red line denotes the set-
tings in the simulation, which are α = 0.8, v̄ = 13µm/s, Z = 15, D = 0.4µm2/s .
The green dashed lines denotes the initial guesses in fitting. The simulation was
done with λ̄ = 1s−1, Zλ = 8, the particle density of 5 × 10−4µm−3, the pixel
size of 1.625µm, the image size of 512 × 512 pixels, and the depth of field of
40µm. Averaging the data in q < 1.934µm−1 (with the extraordinary points
excluded), we can get α = 0.797±0.008, v̄ = 13.2±0.3µm/s, σ = 3.2±0.6µm/s,
λ = 1.2 ± 0.9s−1 D = 0.38 ± 0.02µm2/s. Then a second fitting was done with
fixed α = 0.807, v̄ = 13.1µm/s, σ = 3.6µm/s, D = 0.45µm2/s. Averaging the
data in 0.5µm−1 < q < 1.5µm−1 (with the extraordinary points excluded), we
can get λ = 1.2± 0.2s−1.
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Figure 7.12: Fitting result of constructed ISF of RTDPTT particles with
RTDPTT model, without fixing any parameters. The initial estimations of α
and v̄ were chosen to be their exact values. The red line denotes the settings
in the simulation, which are α = 0.8, v̄ = 13µm/s, Z = 15, λ = 1s−1, D =
0.4µm2/s, δ = 0.1s . The green dashed lines denotes the initial guesses in fitting.
The ISF data were constructed from 105 particles.
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Figure 7.13: Fitting result of constructed ISF of RTDP particles with RTDP
model, without fixing any parameters. The initial estimations of all paramters
were chosen to be their exact values. The red line denotes the settings in
the simulation, which are α = 0.8, v̄ = 13µm/s, Z = 15, λ = 1s−1, D =
0.4µm2/s, δ = 0.1s . The green dashed lines denotes the initial guesses in
fitting. The ISF data were constructed from 105 particles.
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we do a image with a larger size (Figure A.9), the result doesn’t change much.
But we noticed limq→0 λ(q) of the fitted λ(q) seems to be close to the real value.

Then we can try the fitting with the RTDPTT model as shown in Figure 7.16
and 7.17. Now the q-dependence of α, v̄, and σ disappears. In the first fitting
the result depends on the initial guesses, and we cannot find definite λ and δ.
In the second fitting, the result still depends on initial guesses. But if we have
known the exact λ, we can find the δ from the second fitting. Noticing the
difference between the slopes of δ(q) dependence with different initial guesses,
we may use it to find a better estimation of λ.
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Figure 7.14: Fitting result of DDM simulation of RTDPTT particles with
RDP model. The red line denotes the settings in the simulation, which are
α = 0.8, v̄ = 13µm/s, σ = 3.25µm/s, λ = 1s−1, D = 0.4µm2/s, δ = 0.1s .
The green dashed lines denotes the initial guesses in fitting. The simulation was
done with the particle density of 5× 10−4µm−3, the pixel size of 1.625µm, the
image size of 512 × 512 pixels, and the depth of field of 40µm. Averaging the
data in q < 1.934µm−1 (with the extraordinary points excluded), we can get
α = 0.77± 0.02, v̄ = 12.1± 0.3µm/s, σ = 6± 2µm/s, D = 0.46± 0.04µm2/s.
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Figure 7.15: Fitting result of DDM simulation of RTDPTT particles with
RTDP model. The red line denotes the settings in the simulation, which are
α = 0.8, v̄ = 13µm/s, σ = 3.25µm/s, λ = 1s−1, D = 0.4µm2/s, δ = 0.1s .
The green dashed lines denotes the initial guesses in fitting. The simulation
was done with the particle density of 5× 10−4µm−3, the pixel size of 1.625µm,
the image size of 512 × 512 pixels, and the depth of field of 40µm. Averaging
the data in q < 1.934µm−1 (with the extraordinary points excluded), we can
get α = 0.78± 0.01, v̄ = 12.8 ± 0.4µm/s, σ = 3.4± 0.7µm/s, λ = 2.1 ± 1.5s−1,
D = 0.43 ± 0.03µm2/s. Then a second fitting was done with fixed α = 0.785,
v̄ = 12.86µm/s, σ = 3.2µm/s, D = 0.42µm2/s. Now a q-dependence occurred.
The red dash line shows a linear fitting which is λ = 0.9507 + 1.231q.
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Figure 7.16: Fitting result of DDM simulation of RTDPTT particles with
RTDPTT model, without fixing any parameters. The initial guesses were given
only good α and v̄. The red line denotes the settings in the simulation, which
are α = 0.8, v̄ = 13µm/s, σ = 3.25µm/s, λ = 1s−1, D = 0.4µm2/s, δ = 0.1s .
The green dashed lines denotes the initial guesses in fitting. The simulation
was done with the particle density of 5× 10−4µm−3, the pixel size of 1.625µm,
the image size of 512 × 512 pixels, and the depth of field of 40µm. Averaging
the data in q < 1.934µm−1 (with the extraordinary points excluded), we can
get α = 0.80± 0.01, v̄ = 13.1± 0.2µm/s, σ = 3.4± 0.2µm/s, λ = 0.8± 0.3s−1,
D = 0.39± 0.03µm2/s, δ = 0.10± 0.02s.
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Figure 7.17: Two fitting results of same DDM simulation with Figure 7.16
of RTDPTT particles with RTDPTT model, both with fixed α = 0.80, v̄ =
13.1µm/s, σ = 3.4µm/s, D = 0.39µm2/s. The only difference for the upper
two figures and lower two figures is that we took a different initial guess of λ in
fitting. The red line denotes the settings in the simulation, which is λ = 1s−1,
δ = 0.1s. The green dashed lines denotes the initial guesses in fitting. For the
one with good initial guesses, averaging the data in q < 1.934µm−1 (with the
extraordinary points excluded), we can get λ = 0.92±0.05s−1, δ = 0.11±0.01s.



Chapter 8

DDM Experiment

8.1 Experimental requirements

The DDM requires a set of time-lapse images with the frame rate of the order
of 102. From previous works and our experiments, 100fps is considered to be
a suitable choice. From simulation results, we can still do the DDM even for
25fps with a little more exceptional points in the fitting results (data not shown).
Lower frame rate may give sparser points in the first and the most important
decay of ISF, which may be problematic. But a larger frame rate requires a
better imaging system, as well as larger memory in pre-processing the data. For
a reference, processing 4500 pieces of 512×512 16-bit images requires roughly
9GB memory.

From the simulation result, we should focus on the q < 2µm−1 region in the
Fourier space. Theoretically the upper limit of q satisfies

qmax =

√
2π

δx
, (8.1)

where δx is the pixel size of the image. The data near qmax will always have a
bad statistics, so I would recommend choosing the pixel size to be

δx = π/qmax ∼ 2µm . (8.2)

This can be accomplished by a 14µm× 14µm pixel size camera with 10× or 4×
magnification, or 6.5µm× 6.5µm pixel size with 2× or 4× magnification.

To reduce the influence of water flow and vibration of the equipment, I recom-
mend to use a sealed chamber to present the sample, with at least 400µm depth
to ensure the 3D motion of E. coli . For E. coli , if the chamber is airtight, the
sample should be imaged within 30 minutes to avoid hypoxia.
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8.2 AB1157 Wild type E. coli

This data is from Vincent Martinez for his published paper [34]. We tried to
fit this sample with the RDP, RTDP, and RTDPTT models. The RDP fitting
results are shown in Fig. 8.1. As we expected, the fitting gave a v̄(q) dependence.
But we can still have an estimation for fitting with the RTDP model.

Figure 8.1: Fitting result of wild type E. coli movie with RDP model. The
green dash line denotes the initial guesses in the fitting. The images were taken
with the pixel size of 1.40449µm, the image size of 512× 512 pixels. Averaging
the data in q < 2.0µm−1 (with the extraordinary points excluded), we can get
α = 0.59± 0.03, v̄ = 11.0± 0.7µm/s, Z = 1.3± 0.4, D = 0.38± 0.06µm2/s.

The fitting results with the RTDP model is shown in Figure 8.2, with the good-
ness of fitting shown in Figure A.10. It is noticed that in RTDP fitting, a
non-linear λ(q) dependence appears, but the shape is different from the predic-
tion from the simulation. Similar with the simulation data, the RDP model and
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the RTDP model gave a similar α and a little higher v̄.

Figure 8.2: Fitting result of the same data with Fig. 8.1 of wild type E. coli
movie with RTDP model. The green dash line denotes the initial guesses in the
fitting. The images were taken with the pixel size of 1.40449µm, the image size
of 512×512 pixels. Averaging the data in q < 2.0µm−1 (with the extraordinary
points excluded), we can get α = 0.61 ± 0.03, v̄ = 11.4 ± 0.8µm/s, σ = 6.8 ±
1.0µm/s, λ = 2 ± 2s−1, D = 0.37 ± 0.03µm2/s. Then a second fitting was
done with fixed α = 0.61, v̄ = 11.4µm/s, σ = 6.8µm/s, D = 0.37µm2/s. λ(q)
dependence appeared, and we fitted this with a power function λ = p0 + p1q

b.
The red line indicates the fitting result, and the corresponding parameters are
p0 = 1.5224, p1 = 0.21501, b = 2.2974.

The fitting results with the RTDPTT model are shown in Figure 8.3 and 8.4,
with the goodness of fitting in Figure A.11. v̄ was higher than fitting results
with the RTDP model, and didn’t exhibit a q-dependence as expected. We
are not sure if the low q limit in the second fitting indicates the real tumbling
rate, but it is unexpected that this value was less than that from the RTDPTT
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model. Unfortunately we can’t find a definite tumbling duration.

Figure 8.3: Fitting result of the same data with Fig. 8.1 of wild type E.
coli movie with RTDPTT model, without fixing any parameters. The green
dash line denotes the initial guesses in the fitting. The images were taken with
the pixel size of 1.40449µm, the image size of 512 × 512 pixels. Averaging
the data in q < 2.0µm−1 (with the extraordinary points excluded), we can
get α = 0.60 ± 0.02, v̄ = 11.8 ± 0.6µm/s, σ = 6 ± 1µm/s, λ = 2.1 ± 0.5s−1,
D = 0.36± 0.02µm2/s, δ = 0.009± 0.009s.

8.3 AB1157 ∆CheY E. coli

This data is from Vincent Martinez for his published paper [34]. We tried to
fit this sample with the RDP, RTDP, and RTDPTT models. The RDP fitting
results are shown in Fig. 8.5. Same with the wild-type E. coli , the fitting gave a
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Figure 8.4: Dots are fitting result of the same data with Fig. 8.1 of wild
type E. coli movie with RTDPTT model, with fixed α = 0.60, v̄ = 11.8µm/s,
σ = 6.4µm/s, D = 0.36µm2/s. The green dash line denotes the initial guesses in
the fitting. Averaging the data in q < 2.0µm−1 (witht the extraordinary points
excluded), we get λ = 2.3± 1.4s−1, δ = 0.012± 0.018s.

v̄(q) dependence. But we can still have an estimation for the fitting with RTDP
model.

The fitting results with the RTDP model is shown in Figure 8.6, with the good-
ness of fitting shown in Figure A.12. It is noticed that in the RTDP fitting,
a non-linear λ(q) dependence appears. The RDP model and the RTDP model
gives similar α and v̄ as expected. But the q-dependence of v̄ was different from
the simulation. It may due to the hydrodynamic flow in the sample, which is
problematic for DDM.

The fitting results with the RTDPTT model are shown in Figure 8.7 and 8.8,
with the goodness of fitting in Figure A.13. The v̄(q) dependence still appeared
for some unknown reason. The tumbling rate from fitting seems to be zero,
which is expected. As little tumbles happened, we can’t expect to find a definite
tumbling duration.
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Figure 8.5: Fitting result of ∆CheY E. coli movie with RDP model. The
green dash line denotes the initial guesses in the fitting. The images were taken
with the pixel size of 1.40449µm, the image size of 512× 512 pixels. Averaging
the data in q < 2.0µm−1 (with the extraordinary points excluded), we can get
α = 0.51± 0.02, v̄ = 12.0± 0.4µm/s, Z = 3.9± 1.1, D = 0.44± 0.05µm2/s.
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Figure 8.6: Fitting result of the same data with Fig. 8.5 of ∆CheY E. coli
movie with RTDP model. The green dash line denotes the initial guesses in the
fitting. The images were taken with the pixel size of 1.40449µm, the image size
of 512×512 pixels. Averaging the data in q < 2.0µm−1 (with the extraordinary
points excluded), we can get α = 0.52 ± 0.01, v̄ = 12.1 ± 0.5µm/s, σ = 5.3 ±
0.6µm/s, λ = 1 ± 1s−1, D = 0.40 ± 0.02µm2/s. Then a second fitting was
done with fixed α = 0.52, v̄ = 12.1µm/s, σ = 5.3µm/s, D = 0.40µm2/s. λ(q)
dependence appeared, and we fitted it with a power function λ = p0 + p1q

b.
The red line indicates the fitting result, and the corresponding parameters are
p0 = 0.10172, p1 = 0.20274, b = 4.5532.
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Figure 8.7: Fitting result of the same data with Fig. 8.5 of ∆CheY E. coli
movie with RTDPTT model, without fixing any parameters. The green dash
line denotes the initial guesses in the fitting. The images were taken with the
pixel size of 1.40449µm, the image size of 512 × 512 pixels. Averaging the
data in q < 2.0µm−1 (with the extraordinary points excluded), we can get
α = 0.54 ± 0.02, v̄ = 12.0 ± 0.4µm/s, σ = 5.3 ± 0.2µm/s, λ = 0.2 ± 0.2s−1,
D = 0.39± 0.02µm2/s, δ = 0.3± 0.2s.
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Figure 8.8: Dots are fitting result of the same data with Fig. 8.5 of ∆CheY
E. coli movie with RTDPTT model, with fixed α = 0.54, v̄ = 12.0µm/s, σ =
5.3µm/s, D = 0.39µm2/s. The green dash line denotes the initial guesses in
the fitting. The fitting result was not better than that in Fig. 8.7. Averaging
the data in q < 2.0µm−1 (with the extraordinary points excluded), we get
λ = 0.2± 0.1s−1, δ = 0.34± 0.08s.
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Chapter 9

Discussion

9.1 Summery and discussion

In Chapter 2 and 3, I showed how to establish a mathematical model from
detailed microscopic behaviour of the run-and-tumble particles, based on the
master equation. And I showed some conclusions of the model, such as the dif-
fusivity and the intermediate scattering function. In particular, I added a finite
tumbling duration into the simple model, and get the intermediate scattering
function which can be used for the differential dynamic microscopy.

Then I presented a lattice model for the bacteria moving in the gel, with a
continuous approximation. The model and the simulations give us the hint of
why and under what condition we can observe the enhanced mobility with the
increasing tumbling rate in experiments. The intermediate scattering function
is not hard to obtain for the continuous approximation, but with an undefined
function γd(c), whether it can be used for the differential dynamic microscopy
is still an open question. And the direct analysis of the original master equation
is also left as an open question.

With the diffusive limitation of the microscopic model, we can investigate the
interaction of two species with the density dependent motility regulation, which
is the question we are most interested. The current results suggest a gen-
eral principle: up-regulation of density-dependent motility causes the particles
to segregate from a given signal, and inhibition of density-dependent motility
makes the particles to co-migrate with the given signal. The general princi-
ple may be important for understanding some phenomena of collective motion
in morphogenesis and ecology, as well as the pattern formation experiments we
have already had. The patterns formed by mutual interactions also followed this
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principle, and the mechanism is distinctly different from the Turing pattern.

Another part of this thesis is on the differential dynamic microscopy. On the ba-
sis of previous work [33] and [34], I implemented the numerical inverse Laplace
transform in the algorithm to measure the tumbling rate and the tumbling
duration of the run-and-tumble particles. For the simulated run-and-tumble
particles, the algorithm can find their tumbling rate, given the particle speed
from a fitting with the RDP model. For the simulated run-and-tumble particles
with tumbling duration or active rotational diffusion tumbling, a λ(q) depen-
dence will appear in the fitting with the RTDP model. A model with tumbling
duration may helps find the tumbling duration of the simulated particles, only
if the tumbling rate is already known.

The problem that we need a relatively precise guess of speed in the fitting with
the RTDP model and a guess of tumbling rate in the fitting with the RTDPTT
model may be due to the redundant information we put in the model, which
means changing some parameters won’t have much effect on the model. As
suggested by [41], the appearance of an insensitive (sloppy) parameter may be
universal. In the temporal-spatial scales we were investigating, tumbling rate
and tumbling duration are relatively insensitive parameters, as shown in Section
2.5.4 and 3.1.3.

It is a good strategy to measure the different parameters in the different scales.
As we already did, measuring the diffusion coefficient requires the small spatial
scales which corresponds to the large q. To have a good estimation of tumbling
rate, we should focus on the large spatial scales. However, resolving the large
spatial scales needs more pixels or larger magnification, and a larger depth
of field. The longer time in imaging is also needed for catching the diffusion
plateau of the intermediate scattering function. This may bring difficulties in
experiments: more pixels, a larger depth of field, and longer time-lapse imaging
require a better imaging system. The larger magnification may bring difficulty
in finding the focus, as the cells are too small to be seen by human eyes. And
more memory will be needed in processing the larger and more images.

A larger depth of fields d is also necessary for measuring the tumbling rate of the
particles. According to the condition in Section 6.2, the data of q . 2π/d will
be distorted, and the low q data is exactly what we need to find the tumbling
rate. So a larger depth of fields can reduce the noise in the data we require, and
may also enable us to use the approximation (2.46) to simplify the fitting.

The problem of the sloppy parameters also prevents us from including more in-
gredients into the measurement, even if we have got the intermediate scattering
function from a more detailed model. If the information from six parameters is
already redundant, we cannot expected any improvement with more parameters
such as rotational diffusion coefficient, and the new parameters introduced in
the model with obstacles.
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Besides the difficulty in parameter insensitivity, for the particles with tumbling
duration or active rotational diffusion, how to resolve the real tumbling rate
from λ(q) curve is also a question. For the particles with tumbling duration,
limq→0 λ(q) in the fitting with the RTDP model seems to be a good estimation
for λ, especially for the larger images. The data from experiments also support
this guess. But for the particles with active rotational diffusion, it is not that
simple. We still need more efforts to find a way.

The λ(q) dependence for the simulated particles seems to be different from that
of the cells in the experiments. The simulated particles always showed a linear
λ(q) dependence, while the experiments always showed a nonlinear dependence.
One possible reason is the noise from imaging. The noise mainly influences the
high q range, in which the tumbling rate is very insensitive. Another possibility
is that there’s still some ingredients we haven’t found and included in the model,
such power law distribution instead of exponential distribution of the mean run
length. We may find the clues by more simulation. But as the discussion on the
insensitive parameters, we cannot assure that we can measure it from the λ(q)
dependence.

9.2 Future work

Fot the future work of DDM, one major problem is how to analyse and get the
intermediate scattering function from the models with rotational diffusion. If we
are to do DDM to measure the rotational diffusion coefficient, the computation
of ISF up to arbitrary accuracy is the least requirement. We already have the
formal Fourier-Laplace transformed solution. Whether truncation can give us a
good approximation is still needed for further investigation.

To finalize the protocol for DDM measurement, we need more efforts in both
the simulations and the experiments. We need to find a better temporal-spatial
scale from simulations to measure the tumbling rate and the tumbling duration.
We also need to explore more possibility of improve the imaging system for large
depth of fields, and finalize an experimental protocol for the sample preparation
and the imaging.

For the model of the cells moving in the semi-solid agar gel, we only have a pre-
liminary model based on the mean field approximation, with an unknown factor
γd(c). We haven’t gotten a way to analyse the stochastic model to have a better
approximation. As for the simulations, we haven’t implemented the cell-cell
interactions and the cell proliferation. These interactions will give us a lattice
model with the mobility regulations, with which we can test if our hypothesis
for the mobility regulations still holds in the systems with the obstacles. As the
experimental systems are in semi-solid agar, we need these work to ensure our
theoretical prediction remains unchanged.
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With the techenics we have developed, then we can turn to the work of two
species interactions. For the theory, we haven’t fully understood the effects of
cell proliferation. The cell proliferation helps the system to select a wavelength
in the mobility induced phase separation of single species [21]. But for the two
species systems with mutual interactions, the calculation is complicated and the
analysis is difficult. We also haven’t got the amplitude equation for the pattern
selection problem.

For the experiments, firstly we need to have time-lapse images to study the
dynamics of pattern formation. More importantly, the engineered E. coli sys-
tems need to be characterized. Now we have some indirect evidences indicating
that the designed systems were working as we expected. But with the DDM
method, we can directly measure the mobility of E. coli to provide direct and
quantitative evidences. These data would be useful for tuning the gene circuits
to have the desired functions as well.
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Figure A.1: The goodness of fitting in Figure 7.9. Dots are data from the DDM
simulation, and solid lines are from the numerical Laplace inverse transform
of the analytical expression of f(q, s). The other parameters are α = 0.792,
v̄ = 13.1µm/s, σ = 3.3µm/s, D = 0.2µm2/s. The curves are translated to make
them clearer.
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Figure A.2: Fitting result of DDM simulation of RTDP particles with RTDP
model, without fixing any parameters. The red line denotes the settings in
the simulation, which are α = 0.8, v̄ = 13µm/s, Z = 15, λ = 2s−1, D =
0.4µm2/s . The green dashed lines denotes the initial guesses in the fitting.
The simulation was done with the particle density of 5 × 10−4µm−3, the pixel
size of 1.625µm, the image size of 512 × 512 pixels, and the depth of field of
40µm. Averaging the data in q < 1.934µm−1 (with the extraordinary points
excluded), we can get α = 0.796±0.008, v̄ = 13.1±0.4µm/s, σ = 3.2±0.8µm/s,
λ = 2± 1s−1 D = 0.39± 0.03µm2/s. Then a second fitting was done with fixed
α = 0.796, v̄ = 13.2µm/s, σ = 3.2µm/s, D = 0.40µm2/s. Averaging the data in
0.5µm−1 < q < 1.5µm−1 (with the extraordinary points excluded), we can get
λ = 2.3± 0.2s−1.
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Figure A.3: Fitting result of DDM simulation of RTDP particles with RTDP
model, without fixing any parameters. The red line denotes the settings in
the simulation, which are α = 0.8, v̄ = 13µm/s, Z = 15, λ = 2s−1, D =
0.4µm2/s . The green dashed lines denotes the initial guesses in fitting. The
simulation was done with the particle density of 5 × 10−4µm−3, the pixel size
of 2.6µm, the image size of 512 × 512 pixels, and the depth of field of 40µm.
Averaging the data in q < 1.209µm−1 (with the extraordinary points excluded),
we can get α = 0.801 ± 0.009, v̄ = 13.1 ± 0.7µm/s, σ = 3.6 ± 1.6µm/s, λ =
2 ± 1s−1 D = 0.44 ± 0.05µm2/s. Then a second fitting was done with fixed
α = 0.801, v̄ = 13.1µm/s, σ = 3.6µm/s, D = 0.44µm2/s. Averaging the data
in 0.5µm−1 < q < 1.209µm−1 (with the extraordinary points excluded), we can
get λ = 1.8± 0.1s−1.
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Figure A.4: Fitting result of DDM simulation of RTDP particles with RTDP
model, without fixing any parameters. The red line denotes the settings in the
simulation, which are α = 0.8, v̄ = 13µm/s, Z = 15, λ = 5s−1, D = 0.4µm2/s .
The green dashed lines denotes the initial guesses in fitting. The simulation was
done with the particle density of 5×10−4µm−3, the pixel size of 2.6µm, the image
size of 512×512 pixels, and the depth of field of 40µm. Averaging the data in q <
1.209µm−1 (with the extraordinary points excluded), we can get α = 0.80±0.01,
v̄ = 13.0±1.0µm/s, σ = 3.5±1.5µm/s, λ = 6±2s−1 D = 0.46±0.07µm2/s. Then
a second fitting was done with fixed α = 0.80, v̄ = 13.0µm/s, σ = 3.55µm/s,
D = 0.46µm2/s. Averaging the data in 0.5µm−1 < q < 1.209µm−1 (with the
extraordinary points excluded), we can get λ = 4.6± 0.1s−1.
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Figure A.5: Fitting result of DDM simulation of RTDP particles with RTDP
model, without fixing any parameters. The red line denotes the settings in
the simulation, which are α = 0.8, v̄ = 13µm/s, Z = 15, λ = 0.5s−1, D =
0.4µm2/s . The green dashed lines denotes the initial guesses in fitting. The
simulation was done with the particle density of 5 × 10−4µm−3, the pixel size
of 2.6µm, the image size 512 × 512 of pixels, and the depth of field of 40µm.
Averaging the data in q < 1.209µm−1 (with the extraordinary points excluded),
we can get α = 0.807 ± 0.009, v̄ = 13.1 ± 0.2µm/s, σ = 3.6 ± 0.5µm/s, λ =
0.5± 0.5s−1 D = 0.45± 0.05µm2/s. Then a second fitting was done with fixed
α = 0.807, v̄ = 13.1µm/s, σ = 3.6µm/s, D = 0.45µm2/s. Averaging the data
in 0.5µm−1 < q < 1.209µm−1 (with the extraordinary points excluded), we can
get λ = 0.4± 0.1s−1.
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Figure A.6: The goodness of the second fitting in Figure 7.11. Dots are
data from the DDM simulation, and solid lines are from the numerical Laplace
inverse transform of the analytical expression of f(q, s). The other parameters
are indicated in the figure. The curves are translated to make them clearer.
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Figure A.7: Fitting result of DDM simulation of RTDP (with P (λ) =
0.5P (λ; 1, 8) + 0.5P (λ; 5, 15)) particles with RTDP model, without fixing any
parameters. In q-λ figures, the red line denotes the two peaks (λ = 1s−1 and
λ = 5s−1) of P (λ), and green line denotes the average value of λ (λ = 3s−1). The
green dashed lines denotes the initial guesses in fitting. In other figures, the red
line denotes the settings in the simulation, which are α = 0.8, v̄ = 13µm/s, Z =
15, D = 0.4µm2/s . The simulation was done with the particle density of
5×10−4µm−3, the pixel size of 1.625µm, the image size of 512×512 pixels, and
the depth of field of 40µm. Averaging the data in q < 1.934µm−1 (with the ex-
traordinary points excluded), we can get α = 0.801±0.009, v̄ = 13.1±0.4µm/s,
σ = 3.3± 0.8µm/s, λ = 3± 1s−1 D = 0.41± 0.03µm2/s. Then a second fitting
was done with fixed α = 0.799, v̄ = 13.2µm/s, σ = 3.2µm/s, D = 0.42µm2/s.
Averaging the data in 0.5µm−1 < q < 1.5µm−1 (with the extraordinary points
excluded), we can get λ = 3.1± 0.2s−1.
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Figure A.8: The goodness of the second fitting in Figure A.7. Dots are data
from the DDM simulation, and solid lines are from the numerical Laplace inverse
transform of the analytical expression of f(q, s). The other parameters are
indicated in the figure. The curves are translated to make them clearer.
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Figure A.9: Fitting result of DDM simulation of RTDPTT particles with
RTDP model. The red line denotes the settings in the simulation, which are
α = 0.8, v̄ = 13µm/s, σ = 3.25µm/s, λ = 1s−1, D = 0.4µm2/s, δ = 0.1s .
The green dashed lines denotes the initial guesses in fitting. The simulation
was done with the particle density of 5× 10−4µm−3, the pixel size of 1.625µm,
the image size of 1024× 1024 pixels, and the depth of field of 40µm. Averaging
the data in q < 1.934µm−1 (with the extraordinary points excluded), we can
get α = 0.79± 0.01, v̄ = 12.8 ± 0.4µm/s, σ = 3.2± 0.6µm/s, λ = 2.2 ± 1.4s−1,
D = 0.44 ± 0.02µm2/s. Then a second fitting was done with fixed α = 0.786,
v̄ = 12.91µm/s, σ = 2.96µm/s, D = 0.43µm2/s. Now a q dependence occurred.
The red dash line shows a linear fitting which is λ = 0.9247 + 1.5034q.
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Figure A.10: The goodness of fitting in Fig. 8.2. Dots are data from the
experiment, and solid lines are from the numerical Laplace inverse transform
of the analytical expression of f(q, s). The other parameters are α = 0.61,
v̄ = 11.4µm/s, σ = 6.8µm/s, D = 0.37µm2/s. The curves are translated to
make them clearer.
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Figure A.11: The goodness of fitting in Fig. 8.4. Dots are data from the
experiment, and solid lines are from the numerical Laplace inverse transform
of the analytical expression of f(q, s). The other parameters are α = 0.60,
v̄ = 11.8µm/s, σ = 6.4µm/s, D = 0.36µm2/s. The curves are translated to
make them clearer.
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Figure A.12: The goodness of fitting in Fig. 8.6. Dots are data from the
experiment, and solid lines are from the numerical Laplace inverse transform
of the analytical expression of f(q, s). The other parameters are α = 0.52,
v̄ = 12.1µm/s, σ = 5.3µm/s, D = 0.40µm2/s. The curves are translated to
make them clearer.
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Figure A.13: The goodness of fitting in Fig. 8.8. Dots are data from the
experiment, and solid lines are from the numerical Laplace inverse transform
of the analytical expression of f(q, s). The other parameters are α = 0.54,
v̄ = 12.0µm/s, σ = 5.3µm/s, D = 0.39µm2/s. The curves are translated to
make them clearer.



Appendix B

Algorithm reference

B.1 Procedure

The detailed steps of the algorithm are listed below:

1. Load all the images, and do FFT on them. The data will be stored in the
vector imageSeqk.

2. Calculate g(q, l∆t) =
∑
k |I(q, tk + l∆t) − I(q, tk)|2 to approximate the

time average, where k is from 0 to numOfSeq − numOfDiff − 1, and l is
sampled in the log scale. (For now, l is of the form of p2n, where p ≤ 31
is a prime number, and n ≥ 0 is an integer.) The data will be stored in
the vector imagekDiff.

3. Clean up the vector imageSeqk.

4. Average on the the direction of q by integrating the bilinear interpolation
function. The detail can be found in Section B.2. The result will be stored
in the matrix datag.

5. Clean up the vector imagekDiff.

6. Print the unfitted g(q, τ) data, the q array, and the τ array into files.

7. Call lmsder routine to fit g(q, τ) with the theoretical ISF for each q value
or multiple q values at the same time. lmsder is a robust and efficient
rotine of the Levenberg-Marquardt algorithm. The details of the algorithm
please refer to the official manual of GSL [47]. If using the model that
fits the tumbling rate, the inverse Laplace transform will be called in the
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calculation of f(q, τ). See Section B.3.

8. Print the fitting results into files.

B.2 Average of direction of q

The average of the direction of q is done by integrating the bilinear interpolation
function. After Fourier transform, we have the g(q, τ) on the lattice (qx, qy).
Thus in a small lattice cell, we have the bilinear interpolation function (for
convenience, the τ dependence is omitted, and glm = g(qxl, qym) is the value at
the lattice site (l,m).)

g(qx, qy) =g11 +
qy − qy1

qy2 − qy1
(g12 − g11) +

qx − qx1

qx2 − qx1
(g21 − g11)

+
qx − qx1

qx2 − qx1

qy − qy1

qy2 − qy1
(g22 − g21 − g12 + g11) . (B.1)

We write it in the polar coordinates g(q, θ), and then integrate it, to get

gI(q, θ) =

∫
g(q, θ) dθ

= g11θ −
q cos θ + qy1θ

qy2 − qy1
(g12 − g11) +

q sin θ − qx1θ

qx2 − qx1
(g21 − g11)

+
qx1q cos θ + qx1qy1θ − qy1q sin θ − 1

4q
2 cos 2θ

(qx2 − qx1)(qy2 − qy1)
(g22 − g21 − g12 + g11) .

(B.2)

The average will be

g(q) =

∑
k(gI(q, θk+1)− gI(q, θk))∑

k(θk+1 − θk)
, (B.3)

where θk is the angle of the intersection points between the circle of constant q
and the q-grid.

In the code, after we determine the q list that is to be averaged, we loop over
all the lattice cells. In each lattice cell, we determine all the arcs of constant q
in this cell, calculate the end points of each arc, and do the integration in (B.2).
After the loop, we add up all the integrations on arcs, and do the average
according to (B.3).



B.3. NUMERICAL INVERSE LAPLACE TRANSFORM 119

B.3 Numerical inverse Laplace transform

B.3.1 Weeks’ method

The inverse numerical Laplace transform is always regarded as a difficult prob-
lem in numerical analysis. Due to the oscillation nature of the integration kernel
in the inverse Laplace transform, we can’t find a stable and universal algorithm
for all kinds of problems. It is lucky that due to some property of the run-and-
tumble ISF, we can implement the classical Weeks’ method [48] in DDM.

Denoting the function to be inverse transformed as F (s), Weeks’ method first
require spF (s) to be analytic at the infinity, which means F (s) should behave
like 1/sp at the infinity. Then we can make use of the generalized Laguerre
polynomials Lp−1

n (x) to expand the inverse transformed function f(t) [49]. In
our case, sF (s) is already analytical, so we only use the Laguerre polynomials
L0
n(x) = Ln(x).

Firstly we need a Möbius transformation from s to z,

s = σ − bz + 1

z − 1
, z =

s− σ − b
s− σ + b

(B.4)

where b > 0 and σ are the free parameters of the algorithm. As the Möbius
transformation maps the region Re s > σ into the unit circle, and we don’t
want any singularities inside because we are going to use the Cauchy’s integral
formula later, σ should be larger than the largest real part of all the singularities
of F (s). The performance of the algorithm will critically depend on the choice
of σ and b, and we will discuss it in section B.3.2.

Then we expand the function

(s− σ + b)F (s) =
2b

1− z
F

(
σ − bz + 1

z − 1

)
=

∞∑
n=0

anz
n (B.5)

into Taylor series. It means to expand F (s) into

F (s) =

∞∑
n=0

an
(s− σ − b)n

(s− σ + b)n+1
. (B.6)

As it is easily shown that

L[Ln(2bt)] =
(s− 2b)n

sn+1
, (B.7)

we actually get an expansion of the inverse transformed function as

L−1[F (s)] = f(t) =

∞∑
n=0

ane
(σ−b)tLn(2bt) . (B.8)
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The convergence of this series is determined by the radius of convergence R of
Taylor series (B.5). As the asymptotic behaviour of Ln(x) at large n is

Ln(t) =
et/2

4
√
π2nt

cos
(

2
√
nt− π

4

)
+O(n−3/4) , (B.9)

e(σ−b)tLn(2bt) is uniformly bounded. And |an| < K(R)
Rn , where K(R) is a con-

stant related to R [49]. As long as R > 1, the series converges. And the
analyticity of sF (s) at the infinity guarantees the z = 1 is not a singularity of
(B.5), so R > 1. As the series converges like R−n, we can truncate the series as
an approximation of f(t).

The calculation of coefficients an can be done by the Cauchy’s integral formula

an =
1

n!

dn

dzn

[
2b

1− z
F

(
σ − bz + 1

z − 1

)]∣∣∣∣
z=0

=
1

2πi

∮
C

1

zn+1

2b

1− z
F

(
σ − bz + 1

z − 1

)
dz . (B.10)

We take the contour to be the unit circle z = eiθ, the integration becomes

an =
1

2π

∫ 2π

0

e−inθ
2b

1− eiθ
F

(
σ − be

iθ + 1

eiθ − 1

)
dθ

≈ enπi/M

M

M−1∑
m=0

e−2nmπi/M 2b

1− e(2m+1)πi/M
F

(
σ − be

(2m+1)πi/M + 1

e(2m+1)πi/M

)
.

(B.11)

In the later equation, we takeM points θm = 2mπ/M and use the mid-point rule
to approximate the quadrature. If we keep the first M terms in the expansion
(B.5), the summation in (B.11) is a discrete Fourier transformation and can be
done by fast Fourier transform (FFT) algorithm, which is considered to be fast
and stable numerically.

B.3.2 Selection of σ and b

As we mentioned in the last section, the choice of σ and b is critical. We should
try to make the radius of convergence R larger in the expansion (B.5), which
is determined by σ, to improve the convergence. The large σ and b can make
the Möbius transformed singularities of F (s) away from the unit circle, but too
large σ or b may make the numerical evaluation of the series (B.8) fails at the
large t. There is a trade-off in the choice of σ and b.

Generally, one can find the optimal choice by minimizing the error estimation
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[49]

E(σ, b) = max
t

eσt
 M−1∑
n=M/2

|an|+ ε

M/2−1∑
n=0

|an|

 , (B.12)

where ε is the machine precision. The first term is the estimation of the trun-
cation error, and the second one is of the round-off error. However, the two
dimensional optimization problem is often costly, especially if we need to esti-
mate σ and b at every iteration after we change the parameters in ISF. Another
problem is when nan is returned, it becomes even harder to do the searching.

Wiedman did both analytical and numerical analysis in 1999 for the optimal
choice of σ and b [50]. He found that with the knowledge of singularities of
F (s), it is possible to find an equation relating the optimal σ and b, and the
search will be more efficient.

The idea is to find the optimal circle that enclose all the singularities of F (s),
then left us the adjustment of the radius of the mapped circle after Möbius
transformation. Generally there will be two situations.

1. If the circle is determined by one pair of singularities s = α± iβ, b and σ
should satisfy

b2 − (σ − α)2 − β2 = 0 . (B.13)

2. If the circle is determined by two pairs of singularities s1,2 = α1,2 ± iβ1,2,
b and σ should satisfy

b2 − σ2 +
|s2|2(σ − α1)− |s1|2(σ − α2)

α2 − α1
= 0 . (B.14)

Then we only need to choose a suitable σ. Wiedman suggested that we can
do one dimensional optimization to minimize (B.12), but due to the cost of the
search, we simply choose σ to be not far away from the rightmost singularity,
and the convergence of inverse transform is already fast enough.

Here we list the singularities of the intermediate scattering functions we have
considered.

RTD model

The function is

f(q, s) =
arctan(qv/(s+Dq2 + λ))

qv − λ arctan(qv/(s+Dq2 + λ))
. (B.15)
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Firstly, if qv/λ < π/2, it is possible for the denominator of (6.33) to be zero,
which provide a pole

s1 =
qv

tan(qv/λ)
−Dq2 − λ . (B.16)

As

arctan
qv

s+Dq2 + λ
=
i

2
ln

(
s+Dq2 + λ− iqv
s+Dq2 + λ+ iqv

)
, (B.17)

s2,3 = −Dq2 − λ ± iqv will be two branch points, and the line in between will
be the branch cut except for s4 = −Dq2 − λ, which is also a branch point.
Then if qv/λ < π/2, s1 should be the rightmost singularity, and the circle
in the Weidman’s method will be determined by two pairs of singularities s1

(a degenerated pair) and s2,3. If qv/λ ≥ π/2, s2,3,4 should be the rightmost
singularity, and the circle in the Weidman’s method will be determined by one
pair of singularities s2,3.

RTDP model

To find the singularities of

f(q, s) =

∫ ∞
0

arctan(qv/(s+Dq2 + λ))

qv − λ arctan(qv/(s+Dq2 + λ))
P (v) dv , (B.18)

we need to note it may not be a meromorphic function. We could focus on
how the integration behaves when passing through a singularity of the ISF of
the RTD model, as the integration will always exist for s that doesn’t pass any
singularity when integrating. As if qv/λ < π/2, qv/ tan(qv/λ) < qv/(qv/λ) = λ,
s1 < −Dq2 for the ISF of the RTD model. Thus for −Dq2 ≥ s > −Dq2 − λ,
there exists v ≥ 0 that satisfies

qv

λ
= arctan

qv

s+Dq2 + λ
(B.19)

and the integration will meet a pole and diverge. For s > −Dq2 or qv/λ ≥ π/2,
(B.19) cannot be satisfied, and the integration cannot meet more poles. So
the points on the line segment −Dq2 ≥ s > −Dq2 − λ are singularities of
the ISF of the RTDP model. On the other hand, for s = −Dq2 − λ + iy,
y 6= 0, the integration pass through a branch point and can still be determined.
So the singularities of the ISF of the RTDP model are just the line segment
−Dq2 ≥ s ≥ −Dq2 − λ, and the circle in the Weidman’s method is determined
by two (degenerated) pairs of singularities s′1 = −Dq2 and s′2 = −Dq2 − λ.

RTDPTT model

The ISF is

p(q, s) =
qvδ2λ+ [1 + δ(Dq2 + 2λ+ s)] arctan(qv/(Dq2 + λ+ s))

(1 + δλ)[qv(1 + δDq2 + δs)− λ arctan(qv/(Dq2 + λ+ s))]
, (B.20)
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with

P (v) =
vZ

Γ(Z + 1)

(
Z + 1

v̄

)Z+1

e−(Z+1)v/v̄ . (B.21)

At a glance, s = −Dq2,−Dq2 − λ are singularities of f(q, s). Then, for each
value of v, if there exists an s satisfying

qv(δ(s+Dq2) + 1)

λ
≤ π

2
(B.22)

and

tan
qv(δ(s+Dq2) + 1)

λ
=

qv

s+ λ+Dq2
, (B.23)

we have a singularity. When the first condition holds, we have

qv

s+ λ+Dq2
= tan

qv(δ(s+Dq2) + 1)

λ
≥ qv(δ(s+Dq2) + 1)

λ
, (B.24)

giving us an upper and a lower limit of s

(s+ λ+Dq2)(δ(s+Dq2) + 1) ≤ λ , (B.25)

−Dq2 − λ− 1

δ
≤ s ≤ −Dq2 . (B.26)

All the singularities of f(q, s) should be on real axis and in this range. This can
be used in the numerical inverse Laplace transform.

B.3.3 Clenshaw summation

Usually it’s not a good idea to evaluate a series summation such that

f(x) =

N∑
n=0

anLn(x) (B.27)

directly, as it’s time-consuming to evaluate special functions like Laguerre poly-
nomials, and may have some numerical instability problems. We implement the
Clenshaw summation [49] to evaluate f(x) recursively.

If we have some recursion relation

Ln(x) = c1n(x)Ln−1(x) + c2n(x)Ln−2(x) + · · ·+ cmn(x)Ln−m(x) (B.28)

for all n ≥ 1 (the terms with a negative label are assigned to be zero). We
consider a series yn such that

yN+m−1 = yN+m−2 = · · · = yN+1 = 0 ,

yN = aN ,

yn = an + c1,n+1yn+1 + c2,n+2yn+2 + · · ·+ cm,n+myn+m . (B.29)
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Then y0(x)L0(x) = f(x). Usually, the 0th order special function L0(x) is simple.
Then we finished the summation.

To show it’s true, we first solve

an = yn − c1,n+1yn+1 − c2,n+2yn+2 − · · · − cm,n+myn+m (B.30)

and substitute into (B.27), we have

f(x) =

N∑
i=0

(yi − c1,i+1yi+1 − · · · − cm,i+myi+m)Li

=

N∑
i=m

(Li − c1iLi−1 − · · · − cmiLi−m)yi

+ (Lm−1 − c1iLi−1 − · · · − cm−1,m−1L0)ym−1

+ · · ·
+ (L1 − c11L0)y1

+ L0y0 . (B.31)

By the recursion relation (B.28), all terms except L0y0 is zero, then we finish
the proof.

For the Laguerre polynomials we use, the recursion relation reads

Ln(t) =
2n− 1− t

n
Ln−1(t)− n− 1

n
Ln−2(t) , (B.32)

and the series yn should be like

yN+1 = 0 ,

yN = aN ,

yn = an +
2n+ 1− t
n+ 1

yn+1 −
n+ 1

n+ 2
yn+2 , (B.33)

and
∑N
n=0 anLn(t) = y0. Then we don’t need to evaluate any Laguerre polyno-

mials.

In practice, we also truncate an at N0 where aN0 < ε which is a small number
close to the machine precision, to make it more stable numerically. However,
in numerical inverse Laplace transform, the summation can still fail at the ex-
tremely large t. Use the long double data type longer than 64-bit can help
increase the largest t that can be calculated.
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Quick start of DDM code

C.1 Provided models

The process of DDM data need to specify a model priorly (for details, see
Chapter 6. In this code, we provided 5 models and 2 variations.

• Run-and-diffuse (RD) model, corresponding to straight swimmer with
Brownian motion. The variables to be fitted will be alpha (α), D (D),
vbar (v).

• Run-and-diffuse with P (v) (RDP) model, corresponding to straight swim-
mer with Brownian motion and a distribution in v (approximated by
Schultz distribution). The variables to be fitted will be alpha (α), D

(D), vbar (v̄), Z (Z).

• Run-and-tumble-and-diffuse (RTD) model, corresponding to run-and-tumble
particles with Brownian motion. The variables to be fitted will be alpha

(α), vbar (v), lambda (λ), D (D).

• Run-and-tumble-and-diffuse with P (v) (RTDP) model, corresponding to
run-and-tumble particles with Brownian motion and a distribution in v
(approximated by Schultz distribution). The variables to be fitted will be
alpha (α), vbar (v̄), sigma (σ), lambda (λ), D (D).

• Run-and-tumble-and-diffuse with P (v) model, but fixed everything except
tumbling rate (RTDPfix). The variables to be fitted will be lambda (λ).

• Run-and-tumble-and-diffuse with P (v) and tumbling duration (RTDPTT)
model, corresponding to run-and-tumble particles with Brownian motion

125
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and a distribution in v (approximated by Schultz distribution) and a finite
tumbling duration. The variables to be fitted will be alpha (α), vbar (v̄),
sigma (σ), lambda (λ), D (D), delta (δ).

• Run-and-tumble-and-diffuse with P (v) and tumbling duration model, but
fixed everything except tumbling rate and tumbling duration (RTDPT-
Tfix). The variables to be fitted will be lambda (λ), delta (δ).

C.2 System requirement

The main limit of this routine is the memory, as we load all the images when
processing the data. Processing 4500 pieces of 512×512 16-bit images requires
roughly 9GB memory.

The inverse Laplace transform routine will take a lot of time. To measure the
tumbling rate of E. coli , 700-1500 min CPU time is required per sample in
3.33GHz Intel Xeon X5680.

As Visual Studio doesn’t provide long double data type longer than 64-bit, we
don’t recommend to use Windows. However the parameters.h still keeps the
macro switch WINDOWS to import the required external statistic libraries and the
proper header. Unix (including Mac OS X) and Linux should be the perfect
platforms to run this code.

C.3 Get the source code

The source code is stored in the git repository in github.com. To get the source
code, make a new folder and run the following command in bash

git clone https://github.com/zhaoyongfeng1990/DDM.git

C.4 Library dependence

The code is mainly written in C++. Before compiling the code, the following
libraries should be available in user’s system

• GNU Scientific Library (GSL)

• FFTW
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• OpenMP

Users should make sure the version of GSL is new enough to provide the follow-
ing features

• Matrix data types

• lngamma function

• psi function

• lmsder nonlinear curve fitting routine

• cquad numerical integration routine

The parallel computing is implemented using the OpenMP library, so the multi-
thread FFTW is not required. But the long double FFTW library is required
and is critical in numerical inverse Laplace transform.

C.5 Compilation

Before compilation, user should examine the CXX variable in makefile, to make
sure it’s the desired compiler.

To compile the source code, we provided several sh scripts. compileAll.sh can
automatically generate the executable binary files for different models, named as
ddm$ModelName$, where $ModelName$ can be RD, RDP, RTD, RTDP, RTDPfix,
RTDPTT, RTDPTTfix. To use the script, just type

./compileAll.sh

or

sh ./compileAll.sh

in the commend line. The binary files can be found in ./bin/ . The code will
generate 2 binary files for RTDP model. ddmRTDP will perform fitting on all the
parameters, while ddmRTDPfix will perform fitting by fixing all the parameters
except the tumbling rate λ. Details can be found in Section C.10.

To compile an individual model, user can use compile.sh as following

./compile.sh $ModelName$

or
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sh ./compile.sh $ModelName$

where $ModelName$ can be RD, RDP, RTD, RTDP, RTDPfix, RTDPTT, RT-
DPTTfix. The generated file can be found in ./bin/ .

Actually, we are using macro to switch between different model, which is written
in the header config.h. The sh scripts are to detect and generate config.h au-
tomatically, then call on make. Users can also (but not recommended) manually
edit this file and then use

make

or

make ddm

The output file ddm can be found in the current folder. To clean up all the .o

files, user can use

make clean

C.6 Debug

If users would like to dubug or try something, they can write the code in
debugmain.cpp, and then call

make debug

The binary file will be named as debug and will be run automatically.

C.7 Configuration

Before processing the data, several parameters need to be given in prior. Users
can copy ./bin/config.sh to data folder, and edit this file. It contains follow-
ing parameters

• omp num: Number of threads to be used by OpenMP library.

• nqcurve: Number of curves that to be fitted simultaneously. If the model
is not RTDP or RTDPfix, this should be set to 1.

• qincre: If nqcurve = 1, this should be left as blank. If nqcurve > 1,
user should specify the nqcurve− 1 increments of index of q between two
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successive curves. Different increments should be separated by space.

• dimx: Image width in pixel.

• dimy: Image height in pixel.

• numOfSeq: Number of images in the whole time-lapse images.

• numOfDiff: Maximum available number of τ . numOfSeq − numOfDiff

images will be used in calculating average.

• dx: Pixel size in µm.

• qmin: Minimal q value, better to be set to be the twice of qstep, in µm−1.

• qstep: Increment of q, better to be set as 2π/dx/dimx.

• dt: Time difference between two successive images, in second.

• timeWindow: Threshold of time, in second. Only data for τ < timeWindow

will be used in fitting.

• maxIter: Maximum number of iterations in nonlinear curve fitting solver.
(Actually, maxIter + 1.)

• $VariableName$Guess: The initial guess of corresponding variable. Dif-
ferent model will make use of different variables.

After specifying these parameters, call

./config.sh

or

sh ./config.sh

to configure the solver. The script will generate parameters.txt in the current
folder. ddm file should be in the same folder with parameters.txt, it will read
parameters.txt at the of when running.

C.8 How to use

To begin data processing, users need to provide the prefix of the file name

./ddm$ModelName$ $FilePrefix$
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The image files should be individual files named as from $FilePrefix$1.tif

to, for instance, $FilePrefix$4500.tif.

Due to the incomplete support of the TIFF standard, only limited formats of
TIFF file are supported in this program. If the file format is not supported,
try use ImageJ to converge the file into text image. The program can read text
image in ASCII code using

./ddm$ModelName$ simulationTXT

The files should be named as from 0.txt to, for instance, 4499.txt .

Reading ASCII text file is extremely slow. If possible, we recommend to use
binary files, especially for the simulation data. The binary file should be named
as 0 to, say, 4499 , then call

./ddm$ModelName$ simulation

Please notice the data type in binary files should be 64-bit double.

To save time, the program can run the fitting provided with the g(q, τ) data
without processing the original files again. To do this, please keep the files
datag.txt, q.txt, and tau.txt, then call

./ddm$ModelName$ recover

If doing so, the parameters from dimx to dt (refer to the list in Section C.7) in
config.sh and parameters.txt will not be involved in the calculation.

C.9 Output files

After running, the following files will be generated.

• datag.txt: The g(q, τ) function. Each row denotes the g(q, τ) for a given
q.

• q.txt: The list of q value.

• tau.txt: The list of τ value.

• fitparafile.txt: The result of the fitting. The order is same with the
description in Section C.1, then followed with pairs of A(q) and B(q). The
number of A(q) and B(q) depends on nqcurve parameter.

• fiterrfile.txt: The estimated error of the fitting, using the covariant
matrix, but not alway precise. The order is same as fitparafile.txt .
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• status.txt: The exiting status of each fitting.

• statusq.txt: Same with status.txt, but using only one integer number
to denote the status, make it easy for other routine to read. 0 denotes
the fitting is successful, while 11 means the solver reached the maximum
number of iterations.

C.10 Protocol for E. coli measurement

The motion of E. coli has been summarized as run-and-tumble. We are able to
measure the fraction of live E. coli α, mean velocity v̄, standard deviation of
velocity distribution σ, tumbling rate λ, and diffusion coefficient of Brownian
motion D using the following protocol.

1. Do RDP fitting, to get an estimation of α and v̄.

This is necessary because RTDP fitting is not so stable, it requires a good
guesses of α and v̄. RDP fitting would be super fast (in a few seconds).

2. Do RTDP fitting, using α and v̄ from step 1 as initial guess.

This is necessary because RDP fitting always underestimates sigma. This
would take usually 600 min to 1200 min CPU time in 3.33GHz Intel Xeon
X5680 (depends on the noise level of the data).

3. Do RTDP fitting with fixed α, v̄, σ, and D, to fit lambda only.

This would take usuallty 100 min to 400 min CPU time in 3.33GHz Intel
Xeon X5680 (depends on the noise level of the data).

4. Do RTDPTT fitting, using all results from step 2 and 3 as initial guess.

This is necessary because RDP fitting always underestimates sigma. This
would take usually 600 min to 1200 min CPU time in 3.33GHz Intel Xeon
X5680 (depends on the noise level of the data).

5. Do RTDPTT fitting with fixed α, v̄, σ, and D, to fit λ and δ only.

This would take usuallty 100 min to 400 min CPU time in 3.33GHz Intel
Xeon X5680 (depends on the noise level of the data).

In estimating the parameters, we suggest the following algorithm.

1. Calculate the mean m and the standard deviation s in the selected range
of q (say, [1.0µm−1, 1.5µm−1]).
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2. Exclude all the points that are out of the range (m− 3s,m+ 3s).

3. Return to step 1 until no point is excluded in step 2. Then the mean value
is taken to be the estimation of the corresponding variables.

We included a Python script protocol.py to automatically do this protocol
and plot the result. The parameters are the same with config.sh in Section
C.7. Users just need to put all the ddm binaries in the same folder, and then
call any one of the following

python ./protocol.py $FilePrefix$

python ./protocol.py simulation

python ./protocol.py simulationTXT

python ./protocol.py recover

The script was tested with Python 2.7 and 3.4, with numpy, matplotlib, and
subprocess libraries.
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Code reference

The structure of the code mainly falls into two classes, ddm and NILT. ddm class
is the main class that encapsulates all the data and the functions used in ddm,
and NILT class is to perform the numerical inverse Laplace transform. The class
NILT is designed to be as independent as possible, but still have some coupling
with the class ddm.

In this chapter we will list all the functions and structures in the code. As the
code is controlled by several macro switch, I will also mention how they will
change the code.

D.1 Macro switches

All the macro switches should be enabled or disabled in parameters.h.

• ISFRD

ISFRDP

ISFRTD

ISFRTDP

ISFRTDPfix

ISFRTDPTT

ISFRTDPTTfix

Switch between different models.

• NeedNumericalInverseLaplaceTransformation

Switch the numerical inverse Laplace transform routine. Automatically

133



134 APPENDIX D. CODE REFERENCE

enabled in RTD, RTDP, and RTDPfix model.

• IfComplexIntegration

Switch on this macro to enable the integration with v in numerical inverse
Laplace transform routine. Automatically enabled in RTDP and RTDPfix

model.

• WINDOWS

To enable some platform specific code for Windows system.

D.2 Global constants

• const long double pi

High precision of π.

• const int numOfPara

Number of model parameters to be fitted, excluding A(q) and B(q).

• const int M

Valid if using numerical inverse Laplace transform.

The number of points in evaluating numerical integration in Weeks method
(Chapter B.3). This also gives the number of terms in series expansion.
But not all the terms in expansion is used in evaluating f(q, τ).

• const double epsabs

const double epsrel

const int workspaceSize

Valid if integration with v is performed in numerical inverse Laplace trans-
form.

They are error tolerance and size of workspace (memory usage) in nu-
merical integration. The GSL integration routine will give the integration
result I if it satisfies

|Error Estimation| < max{epsabs, epsrel|I|} . (D.1)
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D.3 Supporting structures

• dataStruct

This struct is to pass parameters and data to GSL nonlinear fitting routine.

The common members for all models are

double* data

double* tau

double* q

int num_fit

int num_qCurve

data is to store the data to be fitted. tau and q is the list of τ and q
values. num fit is the number of points to be fitted in each curve with
specific q, and num qCurve is the number of curves with different q.

If the numerical inverse Laplace transform is to be performed, the struc-
ture may also have

NILT* ISFILT

NILT* dvbarISFILT

NILT* dsigmaISFILT

NILT* dDISFILT

NILT* dlambdaISFILT

NILT* dTTISFILT

They are objectives for corresponding numerical inverse.

If the model is RTDPfix or RTDPTTsfix, we include the following constants
to speed up

long double alpha

long double D

long double vbar

long double sigma

long double vbsigma2

long double logfactor

long double vb2sigma2

long double cpsiz1

long double vb2sigma3

• typedef complex<long double> cpx

A rename of complex container.
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• warper

Valid if integration with v is performed in the numerical inverse Laplace
transform.

To bridge the GSL real function integration routine and the complex func-
tion integration, we use this structure to pass the complex function into
interfaces Re and Im functions, which is then passed to GSL routine.

cpx z

The complex number to be evaluated.

cpx (*fun)(cpx z, long double* para, long double x)

The function pointer of complex function. The function should be in the
form of fun(z, x; para) to perform the integration

∫
fun(z, x; para)dx. All

laplace transformed ISF should meet this interface.

long double* parameters

The parameters needed in evaluating ISF.

D.4 Functions

Some functions are defined outside the classes, because GSL will use their point-
ers, but member function of classes can’t be treated as pointers.

• int ISFfun(const gsl vector* para, void* sdata, gsl vector* y)

int dISFfun(const gsl vector* para, void* sdata, gsl matrix* J)

The ISFfun and dISFfun calculated wi(f(q, τi)− yi) and the Jacobian of
f(q, τ) with respect to parameters. The interface is arranged to follow
the requirement of GSL routine. para is the list of parameters. sdata is
actually a pointer to dataStruct to pass the data into the function. y

and J is the corresponding output result.

• double Re(double x, void* params)

double Im(double x, void* params)

Valid if integration with v is performed in numerical inverse Laplace trans-
form.

They are to split the real and image part of integrating a complex function,
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and the interface is arranged to meet the requirement of GSL routine.

• void readTiff(const string tifName, gsl matrix* data, const int

dimx, const int dimy)

void readSim(const string fileName, gsl matrix* data, const int

dimx, const int dimy)

void readSimTXT(const string fileName, gsl matrix* data, const

int dimx, const int dimy)

Reading data from TIFF files, binary files, or ASCII files. The size of the
image need to be specified. The result will be stored in data. The support
of TIFF files is not complete.

D.5 ddm class

D.5.1 Functions

• ddm()

~ddm()

Construction and deconstruction functions. Used for initialization and
clean up.

• void recover()

Reading g(q, τ), q, and τ data from corresponding files. the data will
be stored in datag, qabs, and tau. qsize and num fit will also be set
correspondingly.

• void readAndFFT(const string filePrefix)

Reading data from images or simulation result (binary or text), and do
FFT on it. filePrefix is the prefix of the file name. Result will be stored
in imageSeqk. openMP is used when loading and doing FFT.

• void averSqrModTau()

Calculating g(q, l∆t) =
∑
k |I(q, tk + l∆t) − I(q, tk)|2. Results will be

stored in imagekDiff. tau and num fit will be set up correspondingly.
openMP is used in the loop.

• void aveQBilinear()
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Average the directions of q, by integrating bilinear interpolation function
discussed in Section B.2. Result will be stored in datag. qabs and qsize

will be set up correspondingly. openMP is used in the loop.

• void fitting()

Fitting the data with ISF. The initialization of fitting solver will be differ-
ent for different models. The fitted parameters will be stored in fittedPara.
An estimation of fitting error is stored in fittedErr. openMP is used in
the loop.

• int norm0 rel test(const gsl vector * dx, const gsl vector * x,

double tol, double tole)

Test fitting result using 0-norm (maximum absolute value) of the relative
step size dx/x. tol is the relative tolerance of error, tole is the absolute
tolerance of error.

• void printG()

Print unfitted data to files.

• void printFit()

Print fitting result to files.

• void printdebugM(gsl matrix* m, const string filename)

Print arbitrary gsl matrix object for debugging.

• void cleanSeqk()

Free the memory used by imageSeqk. openMP is used in the loop.

• void cleankDiff()

Free the memory used by imagekDiff. openMP is used in the loop.

D.5.2 Data members

• vector<gsl matrix complex*> imageSeqk

Sequence of images.

• vector<gsl matrix*> imagekDiff

Sequence for storing image after FFT.
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• vector<double> qabs

Absolute value of q.

• vector<double> tau

List of time points.

• gsl matrix* datag

g(q, τ) data matrix.

• gsl matrix* fittedPara

To store the fitting result.

• gsl matrix* fitErr

To store the fitting error.

• int* status

Record of the status of fitting.

• int* qIncreList

The increment of q for multiple g(q, τ) curves with different q.

• double inipara[numOfPara]

Initial parameters.

• double dx

Pixel size.

• double dqx

double dqy

q step after FFT.

• double qmin

Minimal q value.

• double qmax

Maximum possible value of q.
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• double qstep

The width of cirque when averaging the direction of q.

• double dt

Time step.

• double maxIter

Maximum iteration number in fitting.

• double alphaGuess

double DGuess

double vbarGuess

double lambdaGuess

double ZGuess

double sigmaGuess

The initial values to be passed from outside.

• int qsize

Size of q array.

• int OMP NUM THREADS

Number of threads for openMP.

• int dimy

int dimx

Size of the image.

• int dimkx

int dimky

Number of wavenumbers. (Size of q lattice.)

• int numOfSeq

Number of total time points in experiment.

• int numOfDiff

Size of τ array.
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• int numOfk

Number of points in q lattice.

• int num fit

Number of data points used in fitting.

• int num qCurve

Number of g(q, τ) curves with different q

• double timeWindow

Only data for τ < timeWindow will be used in fitting.

D.6 NILT class

D.6.1 Functions

• NILT(int omp_num)

~NILT()

Construction and deconstruction functions. Used for initialization and
clean up.

• void NiLT weeks(cpx (*fun)(cpx, const long double*), const long

double* para)

Calculation of the coefficients in Laguerre polynomial expansion of the
inverse Laplace transform of fun.

• double clenshaw(long double t)

Clenshaw summation for function evaluation.

• void weideman(long double alpha1, long double beta1, long double

incre)

Estimate parameter b by Weideman’s method, if the function is dominated
by one pair of singularities α1 ± iβ1. The σ is set to be close to the
singularity (sigma = alpha1 + incre).

• void weideman(long double alpha1, long double beta1, long double

alpha2, long double beta2, long double incre)
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Estimate parameter b by Weideman’s method, if the function is dominated
by two pair of singularities α1,2 ± iβ1,2. The sigma is set to be close
to the singularity with largest real part, which should set to be alpha2

(sigma = alpha2 + incre).

• void NiLT weeks(long double* para)

Valid if integration with v is performed in numerical inverse Laplace trans-
form.

Calculation of the coefficients in Laguerre polynomial expansion of inverse
transform of invfun, with integration with v.

• cpx invfun(cpx x, long double* para)

Valid if integration with v is performed in numerical inverse Laplace trans-
form.

Numerical evaluation of function to be inverse transformed. Including
integration of a complex function in v. The complex function to be inte-
grated is the function pointer in cfun which is a pointer of warper type.

D.6.2 Data members

The class is usually defined outside the parallel part of the code, to avoid allo-
cate memory at every iteration. But this will causs memory conflict in shared
memory model like openMP. So everything should be kept as a list with num-
ber of elements equals to number of threads, and different thread uses different
element.

• int OMP NUM THREADS

Number of threads.

• fftwl_plan* integration

fftwl_complex** fftwIn

fftwl_complex** fftwOut

FFTW stuff used in calculating numerical integration. Input and output
matrix is stored in fftwIn and fftwOut.

• vector<long double>* CoeA

Coefficients in Laguerre polynomial expansion.

• long double* b
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long double* sigma

long double* b2

long double* sigmab

Important paramters in solver, and some constant for convenient. b2 = 2b,
sigmab = σ − b.

• gsl_function* pRe

gsl_function* pIm

Valid if integration with v is performed in numerical inverse Laplace trans-
form.

Pointers of Re and Im function.

• gsl integration cquad workspace** workspace

Valid if integration with v is performed in numerical inverse Laplace trans-
form.

The workspace used by GSL cquad routine.

• warper* cfun

Valid if integration with v is performed in numerical inverse Laplace trans-
form.

To make the iterface between real itegration and complex evaluation of
functions, we use this structure to present the function that is to be inte-
grated.



144 APPENDIX D. CODE REFERENCE



Bibliography

[1] Francis HC Crick. On protein synthesis. Symposia of the Society for Ex-
perimental Biology, 1958.

[2] Bruce Alberts, Alexander Juhnson, Julian Lewis, Martin Raff, Keith
Roberts, and Peter Walter. Molecular Biology of the Cell. Garland Sci-
ence, 5th edition, 2007.

[3] Human Protein Reference Database.

[4] Pathway Commons.

[5] Reactome.

[6] Uri Alon. An Introduction to Systems Biology: Design Principles of Bio-
logical Circuits. Chapman and Hall/CRC, 1st edition, 2006.

[7] Piers J Ingram, Michael Stumpf, and Jaroslav Stark. Network motifs:
structure does not determine function. BMC Genomics, 7(1):108, 2006.

[8] Wenzhe Ma, Ala Trusina, El-Samad, Hana, Wendell A Lim, and Chao
Tang. Defining network topologies that can achieve biochemical adaptation.
Cell, 138(4):760–773, 2009.

[9] Angela H Chau, Jessica M Walter, Jaline Gerardin, Chao Tang, and
Wendell A Lim. Designing synthetic regulatory networks capable of self-
organizing cell polarization. Cell, 151(2):320–332, 2012.

[10] Wendell A Lim, Connie M Lee, and Chao Tang. Design principles of regula-
tory networks: searching for the molecular algorithms of the cell. Molecular
Cell, 49(2):202–212, 2013.

[11] S Kim, H Li, ER Dougherty, N Cao, and Y Chen. Can markov chain models
mimic biological regulation? Journal of Biological, 10(4):337–357, 2002.

[12] Arup K Chakraborty and Andrej Komrlj. Statistical mechanical concepts

145



146 BIBLIOGRAPHY

in immunology. Annual Review of Physical Chemistry, 61:283–303, 2010.

[13] Guangwei Si, Tailin Wu, Qi Ouyang, and Yuhai Tu. Pathway-Based Mean-
Field model for escherichia coli chemotaxis. Physical Review Letters, 109(4),
2012.

[14] D. Ewen Cameron, Caleb J. Bashor, and James J. Collins. A brief history
of synthetic biology. Nature Reviews Microbiology, 12(5):381–390, 5 2014.

[15] George M. Church, Michael B. Elowitz, Christina D. Smolke, Christo-
pher A. Voigt, and Ron Weiss. Realizing the potential of synthetic biology.
Nature Reviews Molecular Cell Biology, 15(4):289–294, 4 2014.

[16] Nikolce Gjorevski and Celeste M Nelson. Integrated morphodynamic sig-
nalling of the mammary gland. Nature Reviews Molecular Cell Biology,
12(9):581–593, 2011.

[17] Celeste M Nelson and Jason P Gleghorn. Sculpting organs: mechanical reg-
ulation of tissue development. Annual Review of Biomedical Engineering,
14:129–154, 2012.

[18] M Cross and P Hohenberg. Pattern formation outside of equilibrium. Re-
views of Modern Physics, 65, 1993.

[19] AM Turing. The chemical basis of morphogenesis. Philosophical Transac-
tions of the Royal Society B, 237, 1952.

[20] Rushikesh Sheth, Luciano Marcon, Félix M Bastida, Marisa Junco, Laura
Quintana, Randall Dahn, Marie Kmita, James Sharpe, and Maria A Ros.
Hox genes regulate digit patterning by controlling the wavelength of a
Turing-Type mechanism. Science, 338(6113):1476–1480, 2012.

[21] M E Cates, D Marenduzzo, I Pagonabarraga, and J Tailleur. Arrested
phase separation in reproducing bacteria creates a generic route to pattern
formation. Proceedings of the National Academy of Sciences of the United
States of America, 107(26):11715–11720, 2010.

[22] Chenli Liu, Xiongfei Fu, Lizhong Liu, Xiaojing Ren, Carlos K Chau, Si-
hong Li, Lu Xiang, Hualing Zeng, Guanhua Chen, Lei-Han H Tang, Peter
Lenz, Xiaodong Cui, Wei Huang, Terence Hwa, and Jian-Dong D Huang.
Sequential establishment of stripe patterns in an expanding cell population.
Science, 334(6053):238–241, 2011.

[23] Hiroaki Yamanaka and Shigeru Kondo. In vitro analysis suggests that
difference in cell movement during direct interaction can generate various
pigment patterns in vivo. Proceedings of the National Academy of Sciences
of the United States of America, 111(5):1867–1872, 2014.



BIBLIOGRAPHY 147

[24] HC Berg and DA Brown. Chemotaxis in escherichia coli analysed by three-
dimensional tracking. Nature, 1972.

[25] Jonathan Saragosti, Pascal Silberzan, and Axel Buguin. Modeling e. coli
tumbles by rotational diffusion. implications for chemotaxis. PLoS ONE,
7(4), 2012.

[26] Gerald L Hazelbauer. Bacterial chemotaxis: the early years of molecular
studies. Annual Review of Microbiology, 66:285–303, 2012.

[27] Howard C Berg. The rotary motor of bacterial flagella. Annual Review of
Biochemistry, 72:19–54, 2003.

[28] George H Wadhams and Judith P Armitage. Making sense of it all: bac-
terial chemotaxis. Nature Reviews Molecular Cell Biology, 2004.

[29] Steven L Porter, George H Wadhams, and Judith P Armitage. Signal
processing in complex chemotaxis pathways. Nature Reviews. Microbiology,
9(3):153–165, 2011.

[30] Yuhai Tu. Quantitative modeling of bacterial chemotaxis: Signal amplifi-
cation and accurate adaptation. Biophysics, 42(1):337–359, 2013.

[31] Khuloud Jaqaman, Dinah Loerke, Marcel Mettlen, Hirotaka Kuwata,
Sergio Grinstein, Sandra L Schmid, and Gaudenz Danuser. Robust
single-particle tracking in live-cell time-lapse sequences. Nature Methods,
5(8):695–702, 2008.

[32] Roberto Cerbino and Veronique Trappe. Differential dynamic microscopy:
probing wave vector dependent dynamics with a microscope. Physical Re-
view Letters, 100(18):188102, 2008.

[33] Laurence G Wilson, Vincent A Martinez, Jana Schwarz-Linek, and Julien
Tailleur. Differential dynamic microscopy of bacterial motility. Physical
Review Letters, 2011.

[34] Vincent A Martinez, Rut Besseling, Ottavio A Croze, Julien Tailleur, Math-
ias Reufer, Jana Schwarz-Linek, Laurence G Wilson, Martin A Bees, and
Wilson CK Poon. Differential dynamic microscopy: a high-throughput
method for characterizing the motility of microorganisms. Biophysical
Journal, 103(8):1637–1647, 2012.

[35] ME Cates and J Tailleur. When are active brownian particles and run-
and-tumble particles equivalent? consequences for motility-induced phase
separation. EPL (Europhysics Letters), 101(2), 2013.

[36] AP Solon, ME Cates, and J Tailleur. Active brownian particles and run-



148 BIBLIOGRAPHY

and-tumble particles: A comparative study. The European Physical Journal
Special Topics, 224(7):1231–1262, 2015.

[37] MJ Schnitzer. Theory of continuum random walks and application to
chemotaxis. Physical Review. E, Statistical Physics, Plasmas, Fluids, and
Related Interdisciplinary Topics, 48(4):2553–2568, 1993.

[38] K Martens, L Angelani, R Di Leonardo, and L Bocquet. Probability dis-
tributions for the run-and-tumble bacterial dynamics: an analogy to the
lorentz model. The European Physical Journal. E, Soft Matter, 35(9):84,
2012.

[39] Kevin S Brown and James P Sethna. Statistical mechanical approaches to
models with many poorly known parameters. Physical Review. E, Statisti-
cal, Nonlinear, and Soft Matter Physics, 68(2 Pt 1):021904, 2003.

[40] K S Brown, C C Hill, G A Calero, C R Myers, K H Lee, J P Sethna,
and R A Cerione. The statistical mechanics of complex signaling networks:
nerve growth factor signaling. Physical Biology, 1(3):184, 2004.

[41] Joshua J Waterfall, Fergal P Casey, Ryan N Gutenkunst, Kevin S Brown,
Christopher R Myers, Piet W Brouwer, Veit Elser, and James P Sethna.
Sloppy-Model universality class and the vandermonde matrix. Physical
Review Letters, 97(15), 2006.

[42] Ryan N Gutenkunst, Joshua J Waterfall, Fergal P Casey, Kevin S Brown,
Christopher R Myers, and James P Sethna. Universally sloppy parameter
sensitivities in systems biology models. PLoS Computational Biology, 3(10),
2007.

[43] F Detcheverry. Non-Poissonian run-and-turn motions. EPL (Europhysics
Letters), 111(6):60002, 2015.

[44] Jean Guenet and Cyrille Rochas. Agarose sols and gels revisited. Wiley
Online Library, 242(1):65–70, 2006.

[45] AJ Wolfe and HC Berg. Migration of bacteria in semisolid agar. Proceed-
ings of the National Academy of Sciences of the United States of America,
86:6973–6977, 1989.

[46] This idea is from Dr. Julien Tailleur via private communication.

[47] GNU Scientific Library Reference Manual.

[48] William T Weeks. Numerical inversion of laplace transforms using laguerre
functions. Journal of the ACM (JACM), 13(3):419–429, 1966.

[49] Brian Davies. Intrgral Transforms and Their Applications. Springer, 3rd



BIBLIOGRAPHY 149

edition, 2002.

[50] J. A. C. Weideman. Algorithms for parameter selection in the weeks method
for inverting the laplace transform. SIAM Journal on Scientific Computing,
21(1):111–128, 1999.


	Declaration
	Acknowledgement
	List of figures
	List of tables
	Abbreviations and symbols
	Introduction
	Systems biology and synthetic biology
	Morphogenesis and pattern formation
	E. coli motion and run-and-tumble model
	Differential dynamic microscopy
	Project objective and thesis structure

	A simple model
	The master equation
	Moment expansion and diffusive limit
	Chemotaxis flux
	Solution in three-dimensional free space
	Properties of the solution
	Mean square displacement
	Small length scale limit and straight swimmers
	Large length scale limit
	Sensitivity to parameters


	More detailed models
	Finite tumbling duration
	Moment expansion and diffusive limit
	Solution in three-dimensional free space
	Sensitivity analysis

	Tumble by active rotational diffusion
	Moment expansion and diffusive limit
	Formal solution


	Run-and-tumble motion with obstacles
	Run-and-tumble particles on lattice
	Lattice model with obstacles
	Mean field approximation
	Simulation

	Interaction of two species
	Density dependent mobility regulation
	Mutual interactions
	Experimental observation

	Differential dynamic microscopy
	Intermediate scattering function (ISF)
	Differential dynamic microscopy (DDM)
	ISF for different models
	The run-and-diffuse model (RD model)
	The run-and-diffuse model with P(v) (RDP model)
	The run-and-tumble-and-diffuse model (RTD model)
	The run-and-tumble-and-diffuse model with P(v) (RTDP model)
	The run-and-tumble-and-diffuse model with P(v) and tumbling time (RTDPTT model)


	DDM Simulation
	Agent based model
	Gillespie stochastic simulation algorithm
	Rotational diffusion

	Constructed ISF
	Constructed ISF for rotational diffusion
	DDM simulation
	RTDP particles
	RTDP particles with P()
	RTDPTT particles

	DDM Experiment
	Experimental requirements
	AB1157 Wild type E. coli
	AB1157 CheY E. coli

	Discussion
	Summery and discussion
	Future work

	Supplementary figures
	Algorithm reference
	Procedure
	Average of direction of q
	Numerical inverse Laplace transform
	Weeks' method
	Selection of  and b
	Clenshaw summation


	Quick start of DDM code
	Provided models
	System requirement
	Get the source code
	Library dependence
	Compilation
	Debug
	Configuration
	How to use
	Output files
	Protocol for E. coli measurement

	Code reference
	Macro switches
	Global constants
	Supporting structures
	Functions
	ddm class
	Functions
	Data members

	NILT class
	Functions
	Data members


	Bibliography

